Inhibition Properties and Thermodynamic Changes of Binding of p-perazine-bis and p-peridine Dithiocarbamate Sodium Salts to Mushroom Tyrosinase

Document Type : Research Article


1 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, I.R. IRAN

2 Institute of Neural and Sensory Physiology, Medical Faculty of the HeinrichHeine University, Düsseldorf, GERMANY

3 Department of Chemistry, University of Sistan & Bluchestan, Zahedan, I.R. IRAN

4 Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, I.R. IRAN


A mono- and a bi-functional dithiocarbamates as sodium salts were obtained by treating p-peridine or p-perazine in aceton-water mixture with CS2 in the presence of NaOH. These anionic water soluble compounds have been characterized by elemental analysis, IR and 1H NMR spectroscopic studies. Both compounds (p-peridine (I) and p-perazine-bis dithiocarbamate (II) sodium salts) were examined for inhibition of mushroom tyrosinase (MT) activity. The results showed that they inhibit MT competitively. KI values of two compounds at 27°C are 2 and 4 mM. Therefore, the compound (I) is more potent than (II). They chelate active site of tyrosinase via electrostatic interactions. These conclusions are proved by obtained thermodynamic parameters and fluorescence studies. Extrinsic fluorescence studies disprove any tertiary structure changes of MT. Major enthalpy changes in binding of compound (II) in comparison to (I) show that including two carbamate tails in such compounds disturb balancing of hydrophobic interactions with vicinity of active site of enzyme.


Main Subjects

[1] Decker H., Tuczek F., Tyrosinase/Catecholoxidase Activity of Hemocyanins: Structural Basis and Molecular mechanism, Trends. Biochem. Sci., 25(8): 392-397 (2000).
[2] Goding C.R., Melanocytes: the New Black, Int. J. Biochem. Cell Biol., 39(2): 275-9 (2007).
[3] Garcia-Borron J.C., Solano F., Molecular Anatomy of Tyrosinase and Its Related Proteins: Beyond
the Histidine-Bound Metal Catalytic Center
, Pigment. Cell. Res., 15(3): 162-73 (2002).
[4] Holm R.H., Kennepohl P., Solomon E.I., Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev., 96(7): 2239-2314(1996).
[5] Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M. Crystallographic Evidence That
the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis
, J. Biol. Chem., 281(13): 8981-8990 (2006).
[6] Fenoll L. G., Rodriguez-Lopez J. N., Garcia-Sevilla F., Garcia-Ruiz P. A., Varon R., Garcia-Canovas F., Tudela J., Analysis and Interpretation of the Action Mechanism of Mushroom Tyrosinase on Monophenols and Diphenols Generating Highly Unstable o-quinones, Biochim. Biophys. Acta., 1548(1): 1-22 (2001).
[7] Molina F. G., Munoz J. L., Varon R., Lopez J. N., Canovas F. G., Tudela J., An Approximate Analytical Solution to the Lag Period of Monophenolase Activity of Tyrosinase, Int. J. Biochem. Cell Biol., 39(1): 238-52(2007).
[8] Halaouli S., Asther M., Sigoillot J. C., Hamdi M., Lomascolo A., Fungal Tyrosinases: New Prospects in molecular characteristics, bioengineering and Biotechnological Applications, J. Appl. Microbiol., 100 (2): 219-32 (2006).
[9] Kubo I., Nihei K., Shimizu K., Oxidation Products of Quercetin Catalyzed by Mushroom Tyrosinase, Bioorg. Med. Chem., 12(20): 5343-7 (2004).
[10] Mayer A.M., Polyphenol Oxidases in Plants and Fungi: Going Places? A Review, Phytochemistry, 67(21): 2318-31 (2006).
[11] Jacobson E.S., Pathogenic Roles for Fungal Melanins, Clin. Microbiol. Rev., 13(4): 708-17(2000).
[12] Artes F., Castaner M., Gil M. I., Review: Enzymatic Browning in Minimally Processed Fruit and Vegetables, Food Sci. Technol. Int., 4: 377-89 (1998).
[14] Spritz R.A., The Genetics of Generalized Vitiligo and Associated Autoimmune Diseases, J. Dermatol. Sci., 41(1): 3-10 (2006).
[16] Briganti S., Camera E., Picardo M., Chemical and Instrumental Approaches to Treat Hyperpigmentation, Pigment. Cell. Res., 16(2): 101-110 (2003).
[17] Sugumaran M., Barek H., Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals, Int. J. Mol., 17(10):1753-77 (2016).
[18] Garcia-Molina F., Hiner A. N., Fenoll L. G., Rodriguez-Lopez J. N., Garcia-Ruiz P. A., Garcia-Canovas F., Tudela J., Mushroom Tyrosinase: Catalase Activity, Inhibition, and Suicide Inactivation, J. Agric. Food. Chem., 53(9): 3702-9 (2005).
[20] Taherkhani M., Chemical Investigation and Protective Effects of  Bioactive Phytochemicals from Artemisia Ciniformis, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (2): 15-26 (2016)
[21] Kwong H.C., Chidan Kumar C.S., Mah S.H., Chia T.S., Quah C.K., Loh Z.H., et al. Novel Biphenyl ester Derivatives as Tyrosinase Inhibitors: Synthesis, Crystallographic, Spectral Analysis and Molecular Docking studies, Plose One., 12 (2): 1-18 (2017)
[23] Wang R., Chai W.M., Yang Q., Wei M.K., Peng Y., 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism, Bioorg . Med. Chem., 24(19):4620-4625 (2016)
[24] Zhao D.Y., Zhang M.X., Dong X.W., Hu Y.Z., Dai X.Y., Wei X., Hider R.C., Zhang J.C., Zhou T., Design and Synthesis of Novel Hydroxypyridinone Derivatives as Potential Tyrosinase Inhibitors, Bioorg. Med. Chem. Lett., 26(13): 3103-3108 (2016)
[25] Son S., Kim H., Yun H.Y., Kim D.H., Ullah S., Kim S.J., Kim Y.J., Kim M.S, Yoo J.W., Chun P., Moon H.R., (E)-2-Cyano-3-(substituted phenyl)acrylamide Analogs as Potent Inhibitors of Tyrosinase: A Linear Betaphenyl- Alpha, Beta-Unsaturated Carbonyl Scaffold, Bioorg. Med. Chem., 23(24):7728-7734 (2015)
[26] Xie W., Zhang J., Ma X., Yang W., Zhou Y., Tang X., Zou Y., Li H., He J., Xie S., Zhao Y., Liu F., Synthesis and Biological Evaluation of Kojic Acid Derivatives Containing 1,2,4-triazole as Potent Tyrosinase Inhibitors, Chem. Bio. Drug. Des., 86(5):1087-92 (2015).
[27] Chen Z., Cai D., Mou D., Yan Q., Sun Y., Pan W., Wan Y., Song H., Yi W., Design, Synthesis and Biological Evaluation of Hydroxy- or Methoxy-Substituted 5-benzylidene (thio) Barbiturates as Novel Tyrosinase Inhibitors, Bioorg. Med. Chem., 22(13): 3279-3284 (2014).
[28] Ha Y.M., Park Y.J., Kim J.A., Park D., Park J.Y, Lee H.J, Lee J.Y., Moon H.R., Chung H.Y., Design and Synthesis of 5-(substituted benzylidene) thiazolidine-2,4-dione Derivatives as Novel Tyrosinase Inhibitors, Eur. J. Med. Chem., 49: 245-52 (2012).
[29] Rho H.S., Baek H.S., Ahn S.M., Kim M.K., Ghimeray A.K., Cho, D.H.,Hwang J.S., Synthesis and Biological Evaluation of Kojyl Thioether Derivatives as Tyrosinase Inhibitors, Bull. Korean Chem., 31(8): 2375-2378 (2010).
[30] Ali H.M., El-Gizawy A.M., El-Bassiouny R.E., Saleh M.A., The Role of Various Amino Acids
in Enzymatic Browning Process in Potato Tubers, and Identifying the Browning Products,
Food. Chem., 192: 879-85 (2016).
[31] Liu J., Cao R., Yi W., Ma C., Wan Y., Zhou B., Ma L., Song H., A Class of Potent Tyrosinase Inhibitors: Alkylidenethiosemicarbazide Compounds, Eur. J. Med. Chem., 44 (4): 1773-8 (2009).
[32] Liu J., Yi W., Wan Y., Ma L., Song H., 1-(1-Arylethylidene)thiosemicarbazide Derivatives:
A New Class of Tyrosinase Inhibitors,
Biorg. Med. Chem., 16(3): 1096-102 (2008).
[33] Alijanianzadeh M., Saboury A.A., Temperature Dependence of Activation and Inhibition of Mushroom Tyrosinase by Ethyl Xanthate, Bull. Korean. Chem. Soc., 28(5): 758-62 (2007).
[34] Alijanianzadeh M., Saboury A. A., Mansuri-Torshizi H., Haghbeen K., Moosavi-Movahedi A.A., The Inhibitory Effect of Some New Synthesized Xanthates on Mushroom Tyrosinase activities,
J. Enzyme Inhib. Med. Chem., 22(2): 239-46 (2007).
[35] Gheibi N., Saboury A.A., Mansuri-Torshizi H., Haghbeen K., Moosavi-Movahedi A.A., The Inhibition Effect of Some n-Alkyl Dithiocarbamates on Mushroom Tyrosinase, J. Enzyme Inhib. Med. Chem., 20 (4), 393-9 (2005).
[36] Criton M, Mellay-Hamon V. L., Analogues of N-hydroxy-N'-phenylthiourea and N-hydroxy-N'-Phenylurea as Inhibitors of Tyrosinase and Melanin Formation, Bioorg. Med. Chem. Lett., 18(12): 3607-3610 (2008)
[37] Park K.H., Lee J.R., Hahn H.S., Kim Y.H., Bae C.D., Yang J.M., Oh S., Bae Y. J., Kim D. E., Hahn M., Inhibitory Effect of Ammonium Tetrathiotungstate on Tyrosinase and Its kinetic Mechanism, J. Chem. Pharm. Bull. (Tokyo)., 54(9):1266-70. (2006)
[38] Amin E., Saboury A. A., Mansoori-Torshizi H., Moosavi-Movahedi A. A., Potent Inhibitory Effects of Benzyl and p-xylidine-bis Dithiocarbamate Sodium Salts on Activities of Mushroom Tyrosinase, J. Enzyme Inhib. Med. Chem., 25(2): 272–281 (2009)
[39] Farkhanda S., Amin B., Marcel G., Michal D., Karla F., Dickde V., Bushra M. Synthesis, Characterization, Antibacterial and Cytotoxic Activity of New Palladium(II) Complexes with Dithiocarbamate Ligands: X-Ray Structure of Bis(dibenzyl-1-S:S′-dithiocarbamato)Pd(II), J. Organomet. Chem., 692(14): 3019-3026 (2007).
[40] Sanchez-Cortes S., Vasina M., Francioso O., Garcia-Ramos J.V., Raman and Surface-Enhanced Raman Spectroscopy of Dithiocarbamate Fungicides Vib. Spectrosc., 17(2): 133-134 (1998) .
[41] Faraglia G., Sitran S., Montagner D., Pyrrolidine Dithiocarbamates of Pd(II). Inorg. Chim. Acta., 358: 971-80 (2005).
[42] Kim I., Kim C. H., Kim J. H., Lee J., Choi J. J., Chen Z., Lee M G., Chung K.C., Hsu C.Y., Ahn Y.S., Pyrrolidine Dithiocarbamate and Zinc Inhibit Proteasome-Dependent Proteolysis, Exp. Cell. Res., 298(1): 229-38 (2004).
[43] Ronconi L., Maccato C., Barreca D., Saini R., Zancato M., Fregona D., Gold(III) Dithiocarbamate Derivatives of N-Methylglycine: An Experimental and Theoretical Investigation, Polyhedron., 24(4): 521-31 (2005).
[44] Marcheselli L., Preti C., Tagliazucchi M., Cherchi V., Sindellari L., Furlani A., Pepaioannou A., Scarcia V., Synthesis, Characterization and Evaluation of Biological Activity of Palladium (II) and Platinum (II) Complexes with Dithiocarbamic Acids and Their Derivatives as Lgands, Eur. J. Med. Chem., 28(4): 347-52 (1993).
[45] Jimenez M., Chazarra S., Escribano J., Cabanes J., Garcia-Carmona F., Competitive Inhibition of Mushroom Tyrosinase by 4-Substituted Benzaldehydes. J. Agric. Food. Chem., 49(8): 4060-3 (2001).
[46] García-Carmona F., García-Cánovas F., Iborra J.L., Lozano J.A., Kinetic Study of the Pathway of Melanizationn between l-dopa and Dopachrome. Biochim. Biophys. Acta., 717 (1): 124-131 (1982).
[47] Han H.Y., Zou H.C., Jeon J.Y., Wang, Y.-J., Xu W.A., Yang J.M., Park Y.D., The Inhibition Kinetics and Thermodynamic Changes of Tyrosinase via the Zinc Ion, Biochim. Biophys. Acta., 1774 (7): 822-7 (2007).
[48] Saboury A.A., Enzyme Inhibition and Activation: A General Theory,  J. Iran. Chem. Soc., 6(2): 219-29 (2009).
[50] Song K.K., Qiu L., Huang H., Chen Q.X., The Inhibitory Effect of Tyrosinase by Arbutin as Cosmetic Additive, Journal of Xiamen University (Natural Science), 42 (6):791–794 (2003).
[51] Perozzo R., Folkers G., Scapozza L., Thermodynamics of Protein-Ligand Interactions: History, Presence, and Future Aspects, J. Recept. Signal Transduct.,24(1-2): 1-52 (2004).
[53] Gasymov O.K., Glasgow B., ANS Fluorescence: Potential to Augment the Identification of the External Binding Sites of Proteins, J. Biochim. Biophys. Acta., 1774(3): 403-11 (2007).
[54] Beltramini M., Lerch K., Fluorescence Properties of Neurospora Tyrosinase, Biochem. J., 205(1): 173-80 (1982).