Solar Photocatalytic Degradation of Diclofenac by N-Doped TiO2 Nanoparticles Synthesized by Ultrasound

Document Type : Research Article


Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN


Anatase N-doped TiO2 nanoparticles were synthesized using ultrasound at low frequency and room temperature. The samples characterized by techniques including XRD, TEM, HRTEM, FT-IR, XPS, and UV–Vis spectroscopy. XPS indicated the existence of nitrogen as an anion dopant within the TiO2 lattice. The solar photocatalytic activity of N-doped TiO2 studied for the degradation and complete mineralization of Diclofenac (DCF). The results showed that the catalytic activity of the nanoparticles related to the operating conditions in the synthesis such as temperature and time of sonication. DCF degradation followed the pseudo-first-order kinetics model under different conditions. Results showed that photogenerated electrons on the catalyst surface played an important role in the mechanism of photocatalytic degradation of DCF. It also confirmed that in the presence of oxygen, the formation of oxidative species such as singlet oxygen and superoxide radicals had major roles in the degradation of DCF.


Main Subjects

[1] Zatloukalová K., Obalová L., Kočí K., Čapek L., Matěj Z., Šnajdhaufová H., Ryczkowski J., Słowik G., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized  TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 29-38 (2017).
[2] Fagan R., Synnott D.W., McCormack D.E., Pillai S.C., An Effective Method for the Preparation of High Temperature Stable Anatase TiO2 Photocatalysts, Appl. Sur. Sci., 371: 447-452 (2016). 
[3] Xie M., Feng Y., Luan Y., Fu X., Jing L., Facile Synthesis of N-doped TiO2 and Its Enhanced Photocatalytic Activity for Degrading Colorless Pollutants, Chem. Plus. Chem., 79(5): 737-742 (2014).
[4] Yoshida T., Niimi S., Yamamoto M., Nomoto T., Yagi S., Effective Nitrogen Doping into TiO2 (N-TiO2) for Visible Light Response Photocatalysis, J. Colloid Interface Sci., 447: 278-281 (2015).
[5] Bahramian A. R., Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-Like TiO2 Nanostructured Thin Film, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 27-41 (2015).
[7] Ananpattarachai J., Seraphin S., Kajitvichyanukul P., Formation of Hydroxyl Radicals and Kinetic Study of 2-Chlorophenol Photocatalytic Oxidation Using C-doped TiO2, N-doped TiO2, C, N Co-Doped TiO2 Under Visible Light, Environ. Sci. Poll. Res., 23(4): 3884-3896 (2016).
[9] Fan J., Zhao Z., Liu W., Xue Y., Yin S., Solvothermal Synthesis of Different Phase N-TiO2 and Their Kinetics, Isotherm and Thermodynamic Studies on the Adsorption of Methyl Orange, J. Colloid and Interface Sci., 470: 229-236 (2016).
[10] Ni J., Fu S., Wu C., Maier J., Yu Y., Li L., Self-Supported Nanotube Arrays of Sulfur-doped TiO2 Enabling Ultrastable and Robust Sodium Storage, Adv. Mater., 28(11): 2259-2265 (2016).
[11] Kuo C. Y., Hsiao H. M., Preparation of Iodine Doped Titanium Dioxide to Photodegrade Aqueous Bisphenol A under Visible Light, Process Safety Environ. Protec., 95: 265-270 (2015).
[12] Xia Y., Jiang Y., Li F., Xia M., Xue M., Li Y., Effect of Calcined Atmosphere on the Photocatalytic Activity of P-Doped TiO2, Appl. Surf. Sci., 289: 306-315 (2014).
[13] Jyothi M. S., Souza Laveena P. D., Shewetharani R., Balakrishna G. R., Novel Hydrothermal Method for Effective Doping of N and F into Nano Titania for Both, Energy and Environmental Applications, Mater. Res. Bull., 74: 478-484 (2016).
[14] Li H., Hao Y., Lu H., Liang L., Wang Y., Qiu J., Shi X., Wang Y., Yao J., A Systematic Study on Visible-Light N-doped TiO2 Photocatalyst Obtained from Ethylenediamine by Sol-Gel Method, Appl. Surf. Sci., 344: 112-118 (2015).
[16] Zhou X., Lu J., Jiang J., Li X., Lu M., Yuan G., Wang Z., Zheng M., Seo H. J., Simple Fabrication of N-Doped Mesoporous TiO2 Nanorods with the Enhanced Visible Light Photocatalytic Activity, Nanoscale Res. Lett., 9: 34-40 (2014).
[17] Vaiano V., Sacco O., Lervonilo G., Sannino D., Ciambelli P., Rigouri R., Bezzeccheri E., Rubino A., Enhanced Visible Light Photocatalytic Activity by Up-Conversion Phosphors Modified N-Doped TiO2, Appl. Catal. B: Environ., 176-177: 594-600 (2015).
[18] Mamane H., Horovitz I., Lozzi L., Di Camilo D., Avisar D., The Role of Physical and Operational Parameters in Photocatalysis by N-Doped TiO2 Sol-Gel Thin Films, Chem. Eng. J., 257: 159-169
[19] Selvaraj A., Sivakumar S., Ramasamy A. K., Balasubramanian V., Photocatalytic Degradation of Triazine Dyes over N-Doped TiO2 in Solar Radiation, Res. Chem. Intermediates, 39(6): 2287-2302 (2013).
[21] Powell M. J., Dunnill C. W., Parkin I. P., N-Doped TiO2 Visible Light Photocatalyst Films via a Sol-Gel Route Using TMEDA as the Nitrogen SourceJ. Photochem. Photobio.A: Chem.,281: 27-34 (2014).
[23] Liu W. X., Jiang P., Shao W. N., Zhang J., Cao W. B., A Novel Approach for the Synthesis of Visible-Light-Active Nanocrystalline N-Doped TiO2 Photocatalytic Hydrosol, Solid State Sci., 33: 45-48 (2014).
[24] Larumbe S., Monge M., Gomez-Polo C., Comparative Study of (N, Fe) Doped TiO2 Photocatalysts, Appl. Surf. Sci., 327: 490-497 (2015).
[25] Ghugal S. G., Umare S. S., Sasikala R., Enhanced Photocatalytic Activity of TiO2 Assisted by Nb, N and S Multidopants, Mater. Res. Bull., 61: 298-305 (2015).
[26] Liu H., Yao T., Ding W., Wang H., Ju D., Chai W., Study on the Optical Property and Surface Morphology of N-Doped TiO2 Film Deposited with Different N2 Flow Rates by DCPMS, J. Environ. Sci., 25: 54-58 (2013).
[27] Zhao W., Li Y., Zhang M., Chen J., Xie L., Shi Q., Zhu X., Direct Microwave-Hydrothermal Synthesis of Fe-Doped Titania with Extended Visible-Light Response and Enhanced H2-Production Performance, Chem. Eng. J., 283: 105-113 (2016).
[28] Martínez C., Canle M. L., Fernández M. I., Santaballa J. A., Faria J., Aqueous Degradation of Diclofenac by Heterogeneous Photocatalysis Using Nanostructured Materials, Appl. Catal. B: Environ., 107(1-2): 110-118 (2011).
[30] Chaudhary R. P., Koymen A. R., Synthesis of Magnetic GdC2 Nanoparticles Using Cavitation Plasma, Mater. Lett., 158: 194-197 (2015).
[31] Osorio-Vargas P. A., Pulgarin C., Sienkiewicz A., Pizzio L. R., Blanco M. N., Torres-Palma R. A., Pétrier C., Rengifo-Herrera J. A., Low-Frequency Ultrasound Induces Oxygen Vacancies Formation and Visible Light Absorption in TiO2 P-25 Nanoparticles, Ultrason. Sonochem., 19(3): 383-386 (2012).
[32] Lee Y.G., Park J.H., Oh C., Oh S.G., Kim Y.G., Preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol-Gel Reaction in Aqueous Solution, Langmuir, 23 (22): 10875–10878 (2007).
[34] Ziylan A., Koltypin Y., Gedanken A., Ince N. H., More on Sonolytic and Sonocatalytic Decomposition of Diclofenac Using Zero-Valent Iron, Ultrason. Sonochem., 20(1): 580-586 (2013).
[36] Prasad K., Pinjari D. V., Pandit A. B., Mhaske S. T., Phase Transformation of Nanostructured Titanium Dioxide from Anatase-to-Rutile via Combined Ultrasound Assisted Sol-Gel Technique, Ultrason. Sonochem., 17(2): 409-415 (2010).
[37] Davis Z. D., Tatarchuk B. J., Understanding the Dispersion of Ag on High Surface Area TiO2 Supports Using XPS Intensity Ratios, Appl. Surf. Sci., 353: 679-685 (2015).
[38] Daghrir R., Drogui P., Delegan N., El Khakani M. A., Electrochemical Degradation of Chlortetracycline Using N-Doped Ti/TiO2 Photoanode Under Sunlight Irradiations, Water Res., 47(17): 6801-6810 (2013).
[39] Janitabar Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 33(2): 55-64 (2014).
[40] Liu C., Zhang L., Liu R., Gao Z., Yang X., Tu Z., Yang F., Ye Z., Cui L., Xu C., Li Y., Hydrothermal Synthesis of N-doped TiO2 Nanowires and N-doped Graphene Heterostructures with Enhanced Photocatalytic Properties, J. Alloys Compd., 656: 24-32 (2016).
[41] Strzemiecka B., Voelkel A., Donate-Robles J., Martin-Martinez J. M., Assessment of the Surface Chemistry of Carbon Blacks by TGA-MS, XPS and Inverse Gas Chromatography Using Statistical Chemometric Analysis, Appl. Surf. Sci., 316: 315-323 (2014).
[42] Li L. H., Lu J., Wang Z. S., Yang L., Zhou X. F., Han L., Fabrication of the C-N Co-Doped Rod-Like TiO2 Photocatalyst with Visible-Light Responsive Photocatalytic Activity, Mater. Res. Bull., 47(6): 1508-1512 (2012).
[45] Yu J.G., Yu H.G., Cheng B., Zhao X.J., Yu J.C., Ho W.K., The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition, J. Phys. Chem. B, 107(50): 13871–13879 (2003).
[46] Mani A. D., Kumar Reddy P. M., Srinivaas M., Ghosal P., Xanthopoulos N., Subrahmanyam C., Facile Synthesis of Efficient Visible Active C-Doped TiO2 Nanomaterials with High Surface Area for the Simultaneous Removal of Phenol and Cr(VI), Mater. Res. Bull., 61: 391-399 (2015).
[47] Zhou P., Yu J., Wang Y., The New Understanding on Photocatalytic Mechanism of Visible-Light Response N-S Codoped Anatase TiO2 by First-Principles, Appl. Catal. B: Environ., 142-143: 45-53 (2013).
[48] Kim N. J., La Y. H., Im S. H., Ryu B. K., Optical and Structural Properties of Fe-TiO2 Thin Films Prepared by Sol-Gel Dip Coating, Thin Solid Films, 518(24): 156-160 (2010).
[50] Reddy D. R., Kumaravel Dinesh G., Anandan S., Sivasankar T., Sonophotocatalytic Treatment of Naphtol Blue Black Dye and Real Textile Wastewater Using Synthesized Fe-Doped TiO2, Chem. Eng. Process: Process Intensification, 99: 10-18 (2016).
[51] He J., Gou R., Fang L., Dong W., Zheng F., Shen M., Characterization and Visible Light Photocatalytic Mechanism of Size-Controlled BiFeO3 Nanoparticles, Mater. Res. Bull., 48(9): 3017-3024 (2013).
[52] Rodríguez E. M., Márquez G., Tena M., Álvarez P. M., Beltrán F. J., Determination of Main Species Involved in the First Steps of TiO2 Photocatalytic Degradation of Organics with the Use of Scavengers: The Case of Ofloxacine, Appl. Catal. B: Environ., 178: 44-53 (2015).
[53] Zhou L., Song W., Chen Z., Yin G., Degradation of Organic Pollutants in Wastewater by Bicarbonate-Activated Hydrogen Peroxide with a Supported Cobalt Catalyst, Environ. Sci. Technol., 47(8): 3833-3839 (2013).
[54] Li F., Kang Y., Chen M., Liu G., Lv W., Yao K., Chen P., Huang H., Photocatalytic Degradation and Removal Mechanism of Ibuprofen via Monoclinic BiVO4 under Simulated Solar Light, Chemosphere, 150: 139-144 (2016).