Sorption of Thorium Using Magnetic Graphene Oxide Polypyrrole Composite Synthesized from Water Hyacinth Roots

Document Type : Research Article

Author

Nuclear Materials Authority, 530 P.O. Box Maadi, Cairo, EGYPT

Abstract

Polypyrrole magnetic graphene oxide (PPy/MGO) composites have been synthesized from a natural source (water hyacinth roots) using polymerization technique for Th(IV) ions pre-concentration from aqueous solutions. The effects of controlling factor have been studied using the batch technique. The obtained results show that the maximum Th(IV) adsorption capacity by PPy/MGO composite is 277.8 mg/g at pH 4, which is higher than traditional adsorbents.  PPy/MGO composite also presents excellent regeneration/reuse property. The PPy/MGO was thoroughly characterized by a number of techniques namely, Fourier transforms infrared, Raman, as well as X-ray diffraction, thermogravimetric and Energy-Dispersive X-ray (EDX). Due to the high adsorption capacity of Th (IV), PPy/MGO composite can be used in nuclear fuel achievement and for Th(IV) environmental pollution cleanup.

Keywords

Main Subjects


[1] Brugge D., deLemos J.L., Oldmixon B., Exposure Pathways and Health Effects Associated with Chemical and Radiological Toxicity of Natural Uranium: A Review, Rev. Environ. Health, 20: 177- (2005).
[2] Metwally E., Kinetic Studies for Sorption of Some Metal Ions From Aqueous Acid Solutions onto TDA Impregnated Resin, J. Radional. Nucl. Chem., 270: 559-  (2006).
[3] Sharma P., Tomar R., Synthesis and Application of an Analogue of Mesolite for the Removal of Uranium(VI), Thorium(IV), and Europium(III) From Aqueous Waste, Microporous Mesoporous Mater, 116: 641-  (2008).
[4] Tang Y.Z., Reeder R.J., Uranyl and Arsenate Cosorption on Aluminum Oxide Surface, Geochim. Cosmochim. Acta, 73: 2727-  (2009).
[5] Shao D.D., Li J.X., Wang X.K., Poly(amidoxime)-Reduced Graphene Oxide Composites as Adsorbents for the Enrichment of Uranium from Seawater, Sci. China Chem., 57: 1449-   (2014).
[6] Gado M., Morsy A., Preparation of Poly-Aniline-Magnetic Porous Carbon Composite for Using as Uranium Adsorbent, American Journal of Materials Synthesis and Processing, 2: 32-  (2017).
 [7] Olmez Aytas S., Akyil S., Eral M., Adsorption and Thermodynamic Behavior of Uranium on Natural Zeolite, J. Radioanal. Nucl. Chem., 260: 119-   (2004).
[8] Shahwan T., Erten H.N., Characterization of Sr2+ Uptake on Natural Minerals of Kaolinite and Magnetise Using XRPD SEM/EDS, and DRIFT, Radiochim. Acta, 93: 225-   (2005).
[9] Shehata F.A., Attallah M.F., Borai E.H., Hilal M.A., Abo-Aly M.M., Sorption Reaction Mechanism of Some Hazardous Radionuclides From Mixed Waste by Impregnated Crown Ether onto Polymeric Resin, Appl. Radiat. Isot., 68: 239-   (2010).
[10] Atia A.A., Studies on the Interaction of Mercury(II) and Uranyl with Modified Chitosan Resins, Hydrometallurgy, 80: 13-   (2005).
[11] Li W.J., Tao Z.Y., Comparative Study on Th(IV) Sorption on Alumina and Silica From Aqueous Solutions, J. Radioanal. Nucl. Chem., 254: 187-   (2002).
[12] Seko N., Tamada M., Yoshii F., Current Status of Adsorbent for Metal Ions with Radiation Grafting and Crosslinking Techniques, Nucl. Instrum. Methods Phys. Res. Sect. B 236: 21-  (2005).
[13] Vivero-Escoto J.L., Carboni M., Abney C.W., DeKrafft K.E., Lin, Organofunctionalized Mesoporous Silicas for Efficient Uranium Extraction, Microporous Mesoporous Mater., 180: 22-  (2013).
[14] Prasada Rao T., Metilda P., Mary Gladis J., Preconcentration Techniques for Uranium(VI) and Thorium(IV) Prior to Analytical Determination - An Overview, Talanta, 68: 1047-  (2006).
[15] Prabhakaran D., Subramanian M.S., Selective Extraction of U(VI) Th(IV), and La(III) From Acidic Matrix Solutions and Environmental Samples Using Chemically Modified Amberlite XAD-16 Resin, Anal. Bioanal. Chem., 379: 519-  (2004).
[16] Donat R., Esen K., Cetisli H., Aytas S., Adsorption of Uranium(VI) onto Ulva sp.-Sepiolite Composite, J Radioanal Nucl Chem, 279: 253-   (2008).
[17] Ilton E.S., Wang Z.M., Boily J.F., Qafoku O., Rosso K.M., Smith S.C., The Effect of pH and Time on the Extractability and Speciation of Uranium (VI) Sorbed to SiO2, Environ. Sci. Technol., 46: 6604-  (2012).
[18] Ims S., Ek S., Ulusoy U., Uranium and Lead Adsorption onto Bentonite and Zeolite Modified with Polyacrylamidoxime, J Radioanal Nucl. Chem., 292: 41-   (2012).
[19] Belgacem A., Rebiai R., Hadoun H., Khemaissia S., Belmedani M., The Removal of Uranium (VI) From Aqueous Solutions onto Activated Carbon Developed from Grinded Used Tire, Environ. Sci. Pollut. Res., 21: 684-   (2014).
[20] Schierz A., Za¨nker H., Aqueous Suspensions of Carbon Nanotubes: Surface Oxidation, Colloidal Stability and Uranium Sorption, Environ. Pollut., 157: 1088-   (2009).
[21] Li Z.J., Chen F., Yuan L.Y., Liu Y.L., Zhao Y.L., Chai Z.F., Shi W.Q., Uranium (VI) Adsorption on Graphene Oxide Nanosheets From Aqueous Solutions, Chem. Eng. J., 210: 539-   (2012).
[22] Su Q., Pang S., Alijani V., Li C., Feng X., Müllen K., Composites of Graphene with Large Aromatic Molecules, Adv. Mater., 21: 3191-   (2009).
[23] Zhao G., Li J., Ren X., Chen C., Wang X., Few-Layered Graphene Oxide Nanosheets as Superior Sorbents for Heavy Metal Ion Pollution Management, Environ. Sci. Technol., 25: 10454-   (2011).
[24] Li D., MU M., Je S.G., Kaner R.B., Wallance G., Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 3: 101-   (2008).
[25] Yuan W., Shi G., Graphene-Based Gas Sensors, J. Mater. Chem. A., 1: 10078-  (2013).
[26] Harshal P., Mungse H.P., Sharma O.P., Hiroyuki Sugimura H., Khatri O.P., Hydrothermal Deoxygenation of Graphene Oxide in Sub- and Supercritical Water, J. Mater. Chem., 4: 22589-   (2014).
[27] Konwer S., Boruah R., Dolui S.K., Studies on Conducting Polypyrrole/Graphene Oxide Composites as Supercapacitor Electrode, J. Electron Mater, 40: 2248-  (2011).
[28] Zhang S., Hao Y.Y., Liu J., Aksay I.A., Lin Y.H., Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4– From Wastewater, ACS Appl Mater Interf, 3: 3633-  (2011).
[29] Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Advanced Materials, 22: 3906-   (2010). 
[30] Huang X., Yin Z., Wu S., Qi X., He Q., Zhang Q., Yan Q., Boey F., Zhang H., Graphene-based Materials: Synthesis, Characterization, Properties, and Applications, Small, 7: 1876-  (2011).
[31] Liu Y., Dong X., Chen P., Biological and Chemical Sensors Based on Graphene Materials, Chemical Society Reviews, 41: 2283-  (2012).
[32] Machado B.F., Serp P., Graphene-based Materials for Catalysis, Catalysis Science & Technology, 2: 54-  (2012).
[33] Sharma P., Tomar R., Synthesis and Application of an Analogue of Mesolite for the Removal of Uranium(VI), Thorium(IV), and Europium(III) from Aqueous Waste, Microporous Mesoporous Mater, 116: 641-  (2008).
[34] Mowafy E.A., Aly H.F., Extraction Behaviours of Nd(III), Eu(III) La(III), Am(III), and U(VI) with Some Substituted Malonamides from Nitrate Medium, Solvent Extr. Ion Exch., 20: 177-  (2002).
[35] Condamines N., Musikas C., The Extraction by N.N-Dialkylamides. II. Extraction of Actinide Cations, Solvent Extr. Ion Exch., 10: 69-100  (1992).
[36] Ardois C., Musikas C., Fattahi M., Abbe A.C., Selective Actinide Solvent Extraction Used in Conjunction with Liquid Scintillation, J. Radioanal. Nucl. Chem., 226: 241-   (1992).
[37] Zhen X., Chao G., In Situ Polymerization Approach to Graphene-Reinforcednylon-6 Composites, Macromolecules, 43: 6716-   (2010).
[38] Guobo H., Suqing C., Pingan S., Pingping L., Chenglin W., Huading L., Combination Effects of Graphene and Layered Double Hydroxides on Intumescent Flame-Retardant Poly (methyl methacrylate) Nanocomposites, Appl. Clay Sci., 88–89: 78-   (2014).
[39] Chenlu B., Lei S., Weiyi X., Bihe Y., Charles A.W., Jianliu H., Yuqiang G., Yuan H., Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending, J. Mater. Chem., 22: 6088-   (2012).
[40] Massart R., Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans Magn., 17: 1247-    (1981).
[41] Yao J., Sun Y., Yang M., Duan Y., Chemistry, Physics and Biology of Graphene-Based Nanomaterials: New Horizons for Sensing, Imaging and Medicine, Journal of Materials Chemistry, 22: 14313-   (2012).
[42] Shapiro, L., Brannock N.W., “Rapid Analysis of Silicate, Carbonate and Phosphate Rocks”, U.S. Geo. Surv., Bull, V. 1144, 56 p (1962).
[43] Chen C., Wang X., Sorption of Th (IV) to Silica as a Function of pH, Humic/Fulvic Acid, Ionic Strength, Electrolyte Type, Applied Radiation and Isotopes, 65: 155-   (2007) (2007).
[44] Gado M., Zaki S., Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate, Int. J. Waste Resources, 6: 1000194-   (2015).
[45] Yang X., Xu M.S., Qiu W.M., Chen X.Q., Deng M., Zhang J.L., Iwai H., Watanabe E., Chen H.Z., Graphene Uniformly Decorated with Gold Nanodots: in Situ Synthesis, Enhanced Dispersibility and Its Applications, J. Mater. Chem., 21: 8096-   (2011).
[46] Cho G., Fung B.M., Glatzhofer D.T., Lee J.S., Shul Y.G., Preparation and Characterization of Polypyrrole-Coated Nanosized Novel Ceramics, Langmuir, 17: 456-  (2001).
[47] Tian B., Zerbi G., Lattice Dynamics and Vibrational Spectra of Polypyrrole, J. Chem. Phys., 92: 3886-   (1990).
[48] Mahmud H.N.M.E., Kassim A., Zainal Z., Yunus W.M.M., Fourier Transform Infrared Study of Polypyrrole–Poly(vinyl alcohol) Conducting Polymer Composite Films: Evidence of Film Formation and Characterization, J. Appl. Polym. Sci., 100: 4107-  (2006).
[49] Zhang X.T., Zhang J., Liu Z.F., Robinsonb C., Enhanced Capacitance and Rate Capability of Graphene/Polypyrrole Composite as Electrode Material for Supercapacitors, J. Power Sources, 196: 1852-  (2004).
[50] Wang H.L., Hao Q.L., Yang X.J., Lu L.D., Wang X., Graphene Oxide Doped Polyaniline for Supercapacitors, Electrochem. Commun., 11: 1158–1161 (2009).
[51] Bissessur R., Liu P.K.Y., Scully S.F., Intercalation of Polypyrrole Into Graphite Oxide, Synth. Met., 156: 1023-   (2006). 
[52] Fan W., Gao W., Zhang C., Tjiu W.W., Pan J.S., Liu T.X., Self-Assembly of Hierarchical Fe3O4 Microsphere/Graphene Nanosheet Composite: Towards a Promising High-Performance Anode for Li-Ion Batteries, J. Mater Chem., 22: 25108-  (2012).
[53] Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H., A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano, 3: 2653-   (2009).
[54] Xu J., Wang K., Zu S.-Z., Han B.-H., Wei Z., Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 4: 5019-   (2010).
[55] Deng X., Lü L., Li H., Luo F., The Adsorption Properties of Pb(II) and Cd(II) on Functionalized Graphene Prepared by Electrolysis Method, J. Hazard. Mater., 183: 923-  (2010).
[56] Li Y., Zhang P., Du Q., Peng X., Liu T., Wang Z., Xia Z., Zhang W., Wang K., Zhu H., Wu D., Adsorption of Fluoride from Aqueous Solution by Graphene, J. Coll. Interf. Sci., 363: 348-  (2011).
[57] Yang S.T., Chen S., Chang Y., Cao A., Liu Y., Wang H., Removal of Methylene Blue from Aqueous Solution by Graphene Oxide, J. Coll. Interf. Sci., 359: 24-  (2011).
[58] Bhaumik M., Leswifi T.Y., Maity A., Srinivasu V.V., Onyango M.S., Removal of Fluoride from Aqueous Solution by Polypyrrole/Fe3O4 Magnetic Nanocomposite, J. Hazard. Mater., 186: 150-  (2011).
[59] Ballav N., Mishra S., Maity A., High Efficient Removal of Chromium(VI) Using Glycine Doped Polypyrrole Adsorbent from Aqueous Solution, Chem. Eng. J., 198–199: 536-  (2012).
[60] Bao Q., Zhang D., Qi P., Synthesis and Characterization of Silver Nanoparticle and Graphene Oxide Nanosheet Composites as a Bactericidal Agent for Water Disinfection, J. Coll. Interf. Sci., 360: 463-  (2011).
[61] De Faria D.L.A., Silva S.V., de Oliveira M.T., Raman Microspectroscopy of Some iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 28: 873-  (1997).
[62] Bersani D., Lottici P.P., Montenero A., Micro-Raman Investigation of Iron Oxide Films and Powders Produced by Sol–Gel Syntheses, J. Raman Spectrosc., 30: 355-  (1999).
[63] Bora C., Dolui S.K., Fabrication of Polypyrrole/ Graphene Oxide Nanocomposites by Liquid/Liquid Interfacial Polymerization and Evaluation of Their Optical, Electrical and Electrochemical Properties, Polymer, 53: 923-  (2012).
[64] Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H., Recent Advances in Graphene Based Polymer Composites, Prog. Polym. Sci., 35: 1350-  (2010).
[65] Lerf A., Klinowski J., Structure of Graphite Oxide Revisited, J. Phys. Chem. B., 102: 4477-  (1998).
[66] KruegerGrasser R., Weiss A., Selective Liquid Sorption Properties of Hydrophobized Graphite Oxide Nanostructures, Colloid Polym. Sci., 276: 570-  (1998).
[67] Liu P., Xiao M., Preparation and Characterization of Poly(vinyl acetate)-Intercalated Graphite Oxide Nanocomposite, J. Mater. Chem., 10: 933-  (2000).
[68] Teksoz S., Acar C., Unak P., Hydrolytic Behavior of Th4+, UO2 2+, and Ce3+ Ions at Various Temperatures,
J. Chem. Eng. Data, 54: 1183-  (2009).
[69] Li Y., Du Q., Liu T., Sun J., Jiao Y., Xia Y., Xia L., Wang Z., Zhang W., Wang K., Zhu H., Wu D., Equilibrium, Kinetic and Thermodynamic Studies on the Adsorptionof Phenol onto Graphene, Materials Research Bulletin, 47: 1898-  (2012).
[70] Wang H., Yuan X., Wu Y., Huang H., Zeng G., Liu Y., Wang X., Lin N., Qi Y., Adsorption Characteristics and Behaviors of Graphene Oxide for Zn(II) Removal from Aqueous Solution, Applied Surface Science, 279: 432-  (2013).
[71] Liu Y.H., Wang Y.Q., Zhang Z.B., Cao X.H., Nie W.B., Li Q., Hua R., Removal of Uranium from Aqueous Solution by a Low Cost and High-Efficient Adsorbent, Applied Surface Science, 273: 68-  (2013).
[72] Anirudhan T.S., Suchithra P.S., Senan P., Tharun A.R., Kinetic Equilibrium Pro-Files of Adsorptive Recovery of Thorium(IV) from Aqueous Solutions Using Poly(methacrylic acid) Grafted Cellulose/Bentonite Superabsorbent Composite, Industrial & Engineering Chemistry Research, 51: 4825-    (2012).
[73] Sheng G., Hu J., Wang X., Sorption Properties of Th(IV) on the Raw Diatomite-Effects of Contact Time, pH, Ionic Strength and Temperature, Appl. Radiat. Isot., 66: 1313-   (2008). 
[74] Moulin C., Amekraz B., Hubert S., Moulin V., Study of Thorium Hydrolysis Species by Eectrospray-Ionization Mass Spectrometry, Analytica Chimica Acta, 441: 269-  (2001).
[75] Chen C., Wang X., Sorption of Th (IV) to Silica as a Function of pH, Humic/Fulvic Acid, Ionic Strength, Electrolyte Type, Applied Radiation and Isotopes, 65: 155-  (2007).
[76] Deng X.J., Lu L.L., Li H.W., Luo F., The Adsorption Properties of Pb(II) and Cd(II) on Functionalized Graphene Prepared by Electrolysis Method, J. Hazard Mater, 183: 923-   (2010).
[77] Manos M.J., Kanatzidis M.G., Layered Metal Sulfides Capture Uranium from Seawater, J. Am. Chem. Soc., 134: 16441-   (2012).