DSA Preparation of Pt NPs @MIL-53(Fe) and Its Catalytic Behaviors

Document Type : Research Article


1 School of Chemical Engineering, Changchun University of Technology, 130012, Changchun, P.R. CHINA

2 Computer Science and Engineering College, Changchun University of Technology, 130012, Changchun, P.R. CHINA


In this work, the effects of preparation methods such as CE oven, microwave irradiation, and ultrasound on the morphology, particle size and crystallinity of MIL-53(Fe) are firstly investigated. Furthermore, the methods are utilized to prepare Pt NPs@MIL-53(Fe). As a result, well-defined Pt NPs@MIL-53(Fe) prepared by microwave irradiation exhibits uniformed morphology, high crystallinity, and high-disperse Pt NPs, which has been confirmed by FT-IR, TG, N2 adsorption at 77K, TEM and PXRD. Pt NPs@MIL-53(Fe) composite can selectively catalyze the thiophene hydrogenation over nitrobenzene and benzothiophene hydrogenation. The result shows that the sulfur amount can rapidly be reduced to less than 10 ppm and the crystallinity of reacted Pt NPs@MIL-53(Fe) is unchangeable.


Main Subjects

[1] Suh M.P., Park H.J., Prasad T.K., Lim D.W., Hydrogen Storage in Metal-Organic Frameworks, Chem. Rev., 112: 782–835(2012).
[2] Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.H., Long J.R., Carbon Dioxide Capture in Metal-Organic Frameworks, Chem. Rev., 112: 724–781 (2012).
[3] Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T., Metal-Organic Framework Materials as Chemical Sensor, Chem. Rev., 112:1105–1125 (2012).
[4] Horcajada P., Gref R., Baati T., Allan P.K., Maurin G., Couvreur P., Férey G., Morris R.E., Serre C., Metal-Organic Frameworks in Biomedicine, Chem. Rev., 112: 1232–1268(2012).
[5] Lee J.Y., Farha O.K., Roberts J., Scheidt K.A., Nguyen S.B.T., Hupp J.T., Metal–Organic Framework Materials as Catalysts, Chem. Soc. Rev., 38: 1450–1459(2009).
[6] Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M., Secondary Building Units, Nets and Bonding in the Chemistry of Metal–Organic Frameworks, Chem. Soc. Rev., 38: 1257–1283(2009).
[7] Stephen S.Y.C., Samuel M.F.L., Jonathan P.H.C., Orpen A.G., Williams I.D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science, 283: 1148-1150(1999).
[8] Serre C., Millange F., Thouvenot C., Noguès M., Marsolier G., Louër D., Férey G., Very Large Breathing Effect in the First Nanoporous Chromium(III)- Based Solids: MIL-53 or  CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·(H2O)y, J. Am. Chem. Soc., 124(45): 13519-13526(2002).
[9] Horcajada P., Serre C., Vallet-Regí M., Sebban M., Taulelle F., Férey G., Metal–Organic Frameworks as Efficient Materials for Drug Delivery, Angew. Chem. Int. Ed., 45(36): 5974–5978(2006).
[10] Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., Margiolaki I., A Chromium Terephthalate–Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309: 2040-2042(2005).
[11] Huang X.C., Lin Y.Y., Zhang J.P., Chen X.X., Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies, Angew. Chem. Int. Ed., 45: 1557–1559(2006); Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R.D., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M., Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, PNAS, 103(27): 10186–10191(2006).
[12] Cavka J.H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud L.P., A New Zirconium Inorganic Building Brick forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc., 130: 13850–13851(2008).
[13] Zhu Q.L., Xu Q., Metal–Organic Framework Composites, Chem. Soc. Rev., 43: 5468-5512 (2014); Shen L., Wu W., Liang R., Lin R., Wu L., Highly Dispersed Palladium Nanoparticles Anchored on UiO-66(NH2) Metal-Organic Framework as a Reusable and Dual Functional Visible-Light-Driven Photocatalyst, Nanoscale, 5: 9374-9382 (2013); He J., Yan Z., Wang J., Xie J,, Jiang L., Shi Y., Yuan F., Yu F., Sun Y., Significantly Enhanced Potocatalytic Hydrogen Evolution under Visible Light over CdS Embedded on Metal–Organic Frameworks, Chem. Commun., 49: 6761-6763 (2013); Zhao M., Deng K., He L., Liu Y., Li G., Zhao H., Tang Z., Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions, J. Am. Chem. Soc., 136: 1738-1741(2014).
[14] Czaja A.U., Trukhan N., Müller U., Industrial Applications of Metal–Organic Frameworks, Chem. Soc. Rev., 38: 1284–1293(2009).
[15] Schlichte K., Kratzke T., Kaskel S., Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-Organic Framework Compound Cu3(BTC)2, Microporous Mesoporous Mater., 73: 81–88(2004).
[16] Henschel A., Gedrich K., Kraehnert R., Kaskel S., Catalytic Properties of MIL-101, Chem. Commun., 4192–4194(2008).
[17] Dhakshinamoorthy A., Garcia H., Catalysis by Metal Nanoparticles Embedded on Metal–Organic Frameworks, Chem. Soc. Rev., 41: 5262–5284(2012).
[18] Lu G. Li S.Z., Guo Z., Farha O.K., Hauser B.G., Qi X.Y., Wang Y., Wang X., Han S.Y., Liu X.G., DuChene J.S., Zhang H., Zhang Q.C., Chen X.D., Ma J., Loo S.C.J., Wei W.D., Yang Y.H., Hupp J.T., Huo F.W., Imparting Functionality to a Metal–Organic Framework Material by Controlled Nanoparticle Encapsulation, Nat. Chem., 4: 310–316(2012).
[19] Ameloot R., Roeffaers M.B.J., Cremer G.D., Vermoortele F., Hofkens J., Sels B.F., Vos D.D., Metal–Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures, Adv. Mater., 23: 1788-1791 (2011).
[20] Hermes S., Schröter M.K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R.W., Fischer R.A., Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition, Angew. Chem. Int. Ed., 44: 6237–6241(2005).
[21] Tsuruoka T., Kawasaki H., Nawafune H., Akamatsu K., Controlled Self-Assembly of Metal–Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures, ACS Appl. Mater. Interfaces, 3: 3788-3791(2011).
[22] Rioux R.M., Song H., Hoefelmeyer J.D., Yang P., Somorjai G.A., High-Surface-Area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica, J. Phys. Chem. B, 109: 2192-2202(2005).
[23] Férey G., Millange F., Morcrette M., Serre C., Doublet M.L., Grenèche J.M., Tarascon J.M., Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties, Angew. Chem. Int. Ed., 46: 3259-3263(2007); Horcajada P., Serre C., Maurin G., Ramsahye N.A., Balas F., Vallet-Regí M., Sebban M., Taulelle F., Férey G., Flexible Porous Metal-Organic Frameworks For a Controlled Drug Delivery, J. Am. Chem. Soc., 130: 6774-6780(2008).
[24] Gordon J., Kazemian H., Rohani S., Rapid and Efficient Crystallization of MIL-53(Fe) by Ultrasound and Microwave Irradiation, Microporous and Mesoporous Mater., 162: 36-43 (2012).
[25] Ai L., Li L., Zhang C., Fu J., Jiang J., MIL-53(Fe): A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Clorimetric Biosensing, Chemistry-A Eur. J., 19: 15105-15108(2013).