Application of Photo-Fenton System (UV/ H2O2/ Fe2+) for Efficient Decolorization of Azo-Dye Acid Yellow 17 in Aqueous Solution

Document Type : Research Article


1 National Centre of Excellence in Physical Chemistry, University of Peshawar- 25120. PAKISTAN

2 National Centre of Excellence in Physical Chemistry, University of Peshawar- 25120. Pakistan

3 Department of Chemistry, Hazara University, y Mansehra-21120. PAKISTAN,


 Herein we report, the robustness of UV/H2O2/Fe2+ system for efficient decolorization of azo-dye Acid Yellow (AY17) solution. It has been found that 88% AY17 decolorized by UV/H2O2/Fe2+ system in 25 minutes under the following optimized conditions; [dye] = 0.14 mM, [H2O2] =1.0 mM, [Fe2+ ] = 0.09 mM, stirring velocity =100 rpm, and pH = 3.0. The decolorization of AY17 by UV/H2O2/Fe2+ system exhibits second-order reaction kinetics. Thermodynamic parameters, activation enthalpy, rH*, (13.76 kJ/mol1), and entropy rS*, (0.034686 J/K) of the dye decolorization were also determined. It was ascertained that electrolytes such as HCO3, CO32−, Cl−, and SO42− decrease the decolorization efficiency by scavenging the hydroxyl radical generation in the dye solution. Finally, the AY17 decolorization in the tape water sample by UV/H2O2/Fe2+ system was also examined.


Main Subjects

[1] Hao O.J., Kim, H., Chiang, P., Technology Decolorization of Wastewater Decolorization of Wastewater, Crit. Rev. Environ. Sci. Technol., 30(4): 449–505 (2000).
[2] Turhan K., Durukan I., Ozturkcan S.A., Turgut, Z., Dyes and Pigments Decolorization of Textile Basic Dye in Aqueous Solution by Ozone, Dye. Pigment., 92(3): 897–901 (2012).
[3] Kalra S.S., Mohan S.M., Sinha A., Singh G., "Advanced Oxidation Processes for Treatment of Textile and Dye Wastewater : A Review", In: 2nd International Conference on Environmental Science and Development, pp. 271–275. IACSIT Press, Singapore (2011).
[4] Luna L.A.V. de., Silva, T.H.G. de., Nogueria R.F.P., Kummrow F., Umbuzeiro, G.A., Aquatic Toxicity of Dyes before and after Photo-Fenton Treatment, J. Hazard. Mater., 276: 332–338 (2014).
[5] Legrini O., Oliveros E., Braun A.M., Photochemical Processes for Water Treatment, Chem. Rev., 93(2): 671–698 (1993).
[7] Naghizadeh A., Nabizadeh R., Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in the Presence of Hydrogen Peroxide. Environ. Prot. Eng., 42(1), (2016).
[8] Kamranifar M., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions : Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 127–137 (2017).
[9] Khan J., Sayed, M., Ali F., Khan, H.M., Removal of Acid Yellow 17 Dye by Fenton Oxidation Process, Zeitschrift Fur Phys. Chemie., 232(4): 507–525 (2018).
[10] Rehman F., Sayed M., Khan J.A., Shah N.S., Khan H.M., Dionysiou D.D., Oxidative Removal of Brilliant Green by UV/S2O82, UV/HSO5 and UV/H2O2 Processes in Aqueous Media: A Comparative Study, J. Hazard. Mater., 257: 506-514 (2018).
[11] Naghizadeh, A., Nasseri, S., Mahvi, A.H., Rashidi, A., Nabizadeh, R., Kalantary, R.R., Fenton Regeneration of Humic Acid-Spent Carbon Nanotubes, Desalin. Water Treat., 54(9): 2490–2495 (2015).
[12] Naghizadeh A., Regeneration of Carbon Nanotubes Exhausted with Humic Acid Using Electro-Fenton Technology, Arab. J. Sci. Eng., 41(1): 155–161 (2016).
[13] Ruppert G., Bauer R., Heisler G., The Photo-Fenton Reaction - Wastewater Treatment Process an Effective Photochemical, J. Photochem. Photobiol. A. Chem, 73(1): 75–78 (1993).
[14] Alalm G.M., Tawfik A., Ookawara S., Degradation of Four Pharmaceuticals by Solar Photo-Fenton Process : Kinetics and Costs Estimation. J. Environ. Chem. Eng., 3(1): 46–51 (2015).
[15] Nogueira R.F.P., Trovó A.G., Silva M.A. da, Villa R.D., Oliverira M.C. de., Fundaments and Environmental Applications of Fenton and Photo-Fenton Processes, Quim. Nova., 30(2): 400–408 (2007).
[16] Özen A.S., Aviyente V., Klein R.A., Modeling the Oxidative Degradation of Azo Dyes:  A Density Functional Theory Study, J. Phys. Chem. A., 107(24): 4898–4907 (2003).
[17] Özen A.S., Aviyente V., Modeling the Substituent Effect on the Oxidative Degradation of Azo Dyes, J. Phys. Chem. A., 108(28): 5990–6000 (2004).
[18] Martínez-Huitle C.A., Brillas E., Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods : A General Review, Appl. Catal. B, Environ., 87(3-4): 105–145 (2009).
[19] Velmurugan S., Ganesh B., Babuponnusami A., Rajasekaran R., Decolourisation of Reactive Blue 28 from Dye Waste Water by Photo Fenton Process and Sono Fenton Processes, Int. J. Sci., 14(3): 1433–1446 (2016).
[20] Gao J., Zhang Q., Su K., Chen R., Peng Y., Biosorption of Acid Yellow 17 from Aqueous Solution by Non-Living Aerobic Granular Sludge, J. Hazard. Mater., 174(1-3): 215–225 (2010).
[22] Lackey L.W., Mines Jr. R.O., McCreanor P.T., Ozonation of Acid Yellow 17 dye in a Semi-Batch Bubble Column, J. Hazard. Mater., 138(2): 357–362 (2006).
[23] Clarizia L., Russo D., Somma I. Di, Marotta R., Andreozzi R., Homogeneous Photo-Fenton Processes at Near Neutral pH : A Review, Appl. Catal. B, Environ. 209: 358–371 (2017).
[24] Ebrahiem E.E., Al-Maghrabi M.N., Mobarki A.R., Removal of Organic Pollutants from Industrial Wastewater by Applying Photo-Fenton Oxidation Technology, Arab. J. Chem., 10(2): S1674–S1679 (2017).
[25] Ammar H.B., Brahim M. Ben, Abdelhédi R., Samet Y., Chemical Enhanced Degradation of Metronidazole by Sunlight via Photo-Fenton Process under Gradual Addition of Hydrogen Peroxide, J. Mol. Catal. A, Chem., 420, 222–227 (2016).
[26] Kwan W.P., Voelker B.M., Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems, Environ. Sci. Technol., 37(6):1150–1158 (2003).
[27] Arslan-Alaton I., Hande B., Schmidt J., Advanced Oxidation of Acid and Reactive Dyes : Effect of Fenton Treatment on Aerobic , Anoxic and Anaerobic Processes, Dye. Pigment., 78(2): 117–130 (2008).
[28] Kwon B.G., Lee D.S., Kang N., Yoon J., Characteristics of P -Chlorophenol Oxidation by Fenton’s Reagent, Water. Res., 33(9): 2110–2118 (1999).
[29] Feng, J., Hu, X., Yue, P.L., Zhu, H.Y., Lu, G.Q.: Degradation of Azo-dye Orange II by a Photoassisted Fenton Reaction Using a Novel Composite of Iron Oxide and Silicate Nanoparticles as a Catalyst, Ind. Eng. Chem. Res., 42(10): 2058–2066 (2003).
[30] Daneshvar N., Behnajady M.A., Mohammadi A.M.K., Dorraji M.S.S.: UV / H2O2 Treatment of Rhodamine B in Aqueous Solution : Influence of Operational Parameters and Kinetic Modeling, Desalination. 230(1-3): 16–26 (2008).
[31] Toor, A.P., Verma, A., Jotshi, C.K., Bajpai, P.K., Singh, V.: Photocatalytic Degradation of Direct Yellow 12 Dye Using UV/TiO2 in a Shallow Pond Slurry Reactor, Dye. Pigment., 68(1): 53–60 (2006).
[32] Mall I.D., Srivastava V.C., Agarwal N.K., Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly ash d Kinetic Study and Equilibrium Isotherm Analyses, Dye. Pigment., 69(3): 210–223 (2006).
[34] Laat J. De, Gallard H., Catalytic Decomposition of Hydrogen Peroxide by Fe (III) in Homogeneous Aqueous Solution : Mechanism and Kinetic Modeling, Environ. Sci. Technol. Technol., 33(16): 2726–2732 (1999).
[35] Trovó A.G., Hassan A.K., Sillanpa M., Tang W.Z., Degradation of Acid Blue 161 by Fenton and Photo-Fenton Processes, Int. J. Environ. Sci. Technol., 13(1): 147–158 (2016).
[36] Samar M.E., Ismail F., Degradation of Methyl Violet 6B Dye by the Fenton Process, Desalination. 254(1-3): 35–41 (2010).
[37] Sun J., Sun S., Wang G., Qiao L., Degradation of Azo Dye Amido Black 10B in Aqueous Solution by Fenton Oxidation Process, Dye. Pigment., 74(3): 647–652 (2007).
[38] Ghiselli G., Jardim W.F., Litter M.I., Mansilla H.D., Destruction of EDTA Using Fenton and Photo-Fenton-Like Reactions under UV-A Irradiation, J. Photochem. Photobiol. A Chem., 167(1): 59–67 (2004).
[39] Liu R., Chiu H.M., Shiau C., Yeh R.Y., Hung Y., Degradation and Sludge production of Textile Dyes by Fenton and Photo-Fenton Processes, Desalination. 73(1): 1–6 (2007).
[40] Modirshahla N., Behnajady M.A., Ghanbary F., Decolorization and Mineralization of C . I . Acid Yellow 23 by Fenton and Photo-Fenton Processes, Dye. Pigment., 73(3): 305–310 (2007).
[41] Zhou L., Song W., Chen Z., Yin G., Degradation of Organic Pollutants in Wastewater by Bicarbonate-Activated Hydrogen Peroxide with a Supported Cobalt Catalyst, Environ. Sci. Technol., 47(8): 3833–3839 (2013).
[43] Siedlecka E.M., Stepnowski P., Phenols Degradation by Fenton Reaction in the Presence of Chlorides and Sulfates, Polish J. Environ. Stud., 14(6): 823–828 (2005).
[44] Muruganandham M., Swaminathan M., Photochemical Oxidation of Reactive Azo Dye with UV – H2O2 Process, Dye. Pigment., 62(3): 269–275 (2004).
[45] Ashraf S.S., Rauf M.A., Alhadrami S., Degradation of Methyl Red Using Fenton’s Reagent and the Effect of Various Salts, Dye. Pigment., 69(1-2): 74-78 (2006).
[47] Bautista P., Mohedano A.F., Casas J.A., Zazo J.A., Rodriguez J.J., An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment, J. Chem. Technol. Biotechnol., 83(10): 1323–1338 (2008).
[48] Karatas M., Argun A.Y., Argun E.M., Decolorization of Antraquinonic Dye, Reactive Blue 114 from Synthetic Wastewater by Fenton Proces : Kinetics and Thermodynamics, J. Ind. Eng. Chem., 18(3): 1058–1062 (2012).
[49] Sun S., Li, C., Sun J., Shi S., Fan M.-H., Zhou Q., Decolorization of an Azo Dye Orange G in Aqueous Solution by Fenton Oxidation Process : Effect of System Parameters and Kinetic Study, J. Hazard. Mater., 161(2-3): 1052–1057 (2009).
[50] Karthikeyan S., Titus A., Gnanamani A., Mandal A.B., Sekaran G., Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes, Desalination. 281: 438–445 (2011).
[51] Elmorsi T.M., Riyad Y.M., Mohamed Z.H., Bary H.M.H. El., Decolorization of Mordant Red 73 Azo Dye in Water Using H2O2/UV and Photo-Fenton Treatment, J. Hazard. Mater., 174(1-3): 352–358 (2010).