Effects of Chemical Treatments (Iron, Zinc and Salicylic Acid) and Soil Water Potential on Steviol Glycosides of Stevia (Stevia rebaudiana Bertoni.)

Document Type : Research Article


1 Department of Agronomy and Plant Breeding, Agriculture Faculty, Shahed University, Tehran, I.R. IRAN

2 Department of Soil Sciences, Agriculture Faculty, Shahed University, Tehran, I.R. IRAN


The most important characteristic of stevia is its high sweetness with zero calories which is due to the presence of Steviol glycosides (SVglys). This research aims to address the effect of salicylic acid (SA) and microelements viz. iron (Fe) and zinc (Zn) under different soil water potentials (-0.5, -3.5, -6.5 and -10 atm) on the production of SVglys and total sugar content in the leaves of stevia. The obtained results indicated that the soil water content and the exogenous application of SA and microelements significantly changed the accumulation of these sweet chemicals in the stevia leaves. The highest values of Stevioside (Stev), Rebaudioside C (Reb C), total SVglys and SVglys yield were obtained in SA + Fe + Zn treatment under the potential of -3.5 atm (76. 82, 2.82, 116.71 mg/g DW and 0.836 mg/g plant, respectively). Also, the HPLC results indicated that the highest rates of Rebaudioside A (Reb A) and the Reb A/Stev ratio (sweetness quality) belonged to SA + Zn treatment under the potential of -3.5 atm (28.63mg g-1 DW and 0.433). The application of SA + Fe + Zn was the most effective in terms of Rebaudioside B (Reb B), Dulcoside A (Dulc A), and total sugar (2.31, 5.73 and 335.8 mg/g DW, respectively). In general, our results suggest that it can be possible to improve the rate of secondary metabolites (SVglys) and hence the sweetness property in stevia leaves by applying SA, Fe, and Zn and particularly by the integrated application of these three agents.


Main Subjects

[1] Javed R., Usman M., Yücesan B., Zia M., Gürel E., Effect of Zinc Oxide (ZnO) Nanoparticles on Physiology and Steviol Glycosides Production in Micropropagated Shoots of Stevia rebaudiana Bertoni, Int. J. Plant Physiol. Biochem., 110: 94-9 (2017).
[3] Lemus-Mondaca R., Vega-Gálvez A., Zura-Bravo L., Ah-Hen K., Stevia rebaudiana Bertoni, Source of a High-Potency Natural Sweetener: A Comprehensive Review on the Biochemical, Nutritional and Functional Aspects, Food Chem., 132(3): 1121-1132 (2012).
[4] Perera W.H., Ghiviriga I., Rodenburg D. L., Alves K., Bowling J.J., Avula B., Khan I.A., McChesney J. D., Rebaudiosides T and U, Minor C-19 xylopyranosyl and Arabinopyranosyl Steviol Glycoside Derivatives from Stevia rebaudiana (Bertoni) Bertoni, Phytochemistry., 135: 106-114 (2017).
[5] JECFA., “Steviol Glycosides from Stevia rebaudiana Bertoni”, 84th Meeting (2017).
[6] Soufi S., D’Urso G., Pizza C., Rezgui S., Bettaieb T., Montoro P., Steviol Glycosides Targeted Analysis in Leaves of Stevia rebaudiana (Bertoni) from Plants Cultivated under Chilling Stress Conditions, Food Chem., 190: 572-580 (2016).
[7] Ahmed B., Hossain M., Islam R., Kumar Saha A., Mandal A., A Review on Natural Sweetener Plant–Stevia Having Medicinal and Commercial Importance, Agronomski Glasnik.73 (1-2): 75-91 (2011).
[8] Purkayastha S., Markosyan A., Prakash I., Bhusari S., Pugh Jr G., Lynch B., Roberts A., Steviol Glycosides in Purified Stevia Leaf Extract Sharing the Same Metabolic Fate, Regul Toxicol Pharmacol., 77: 125-133 (2016).
[9] Karimi M., Ahmadi A., Hashemi J., Abbasi A., Tavarini S., Guglielminetti L., Angelini  L. G., The Effect of Soil Moisture Depletion on Stevia (Stevia rebaudiana Bertoni) Grown in Greenhouse Conditions: Growth, Steviol Glycosides Content, Soluble Sugars and Total Antioxidant Capacity, Sci. Hortic., 183: 93-99 (2015).
[10] Uçar E., Turgut K., Özyiğit Y., Özek T., Özek G., The Effect of Different Nitrogen Levels on Yield and Quality of Stevia (Stevia rebaudiana bert.), .J Plant Nutr., 41 (9): 1130-1137 (2018).
[11] Rizzo B., Zambonin L., Angeloni C., Leoncini E., Vieceli Dalla Sega F., Prata C., Fiorentini D.,  Hrelia S., Steviol Glycosides Modulate Glucose Transport in Different cell typesOxid. Med. Cell. Longev., 2013: 1-11 (2013).
[12] Chattopadhyay S., Raychaudhuri U., Chakraborty, R., Artificial Sweeteners–A Review, Int. J. Food. Sci. Technol., 51(4): 611-621 (2014).
[16] Yadav A. K., Singh S., Dhyani D., Ahuja  P. S., A Review on The Improvement of Stevia [Stevia Rebaudiana (Bertoni)], Can. J. Plant. Sci., 91(1): 1-27 (2011).
[17] WöLwer-Rieck U., The Leaves of Stevia Rebaudiana (Bertoni), their Constituents and the Analyses Thereof: A Review, J. Agric. Food Chem., 60 (4): 886-895 (2012).
[18] Pal P. K., Kumar R., Guleria V., Mahajan M., Prasad R., Pathania V., Gill B. S., Singh D., Chand G., Singh B., Singh R. D., Crop-Ecology and Nutritional Variability Influence Growth and Secondary Metabolites of Stevia Rebaudiana Bertoni, BMC Plant Biol., 15 (1): 6-7 (2015).
[19] Akenga P., Ali S., Anam O., Amir Y., Waudo W., Determination of Selected Micro and Macronutrients in Sugarcane Growing Soils at Kakamega North District, Kenya, IOSR-JAC., 7(7): 34-41 (2014).
[20] Brown P.H., Welch R. M., Cary E. E., Nickel: A Micronutrient Essential for Higher Plants, Plant Physiol., 85 (3): 801-803 (1987).
[21] Gorni P.H., Pacheco A.C., Growth Promotion and Elicitor Activity of Salicylic Acid in Achillea Millefolium L, Afr. J. Biotechnol., 15 (16): 657-665 (2016).
[22] Angourani H. R., Yangajeh J. P., Bolandnazar S., Saba J., Nahandi F. Z., The Effects of Exogenous Salicylic Acid on Some Quantitative and Qualitative Attributes of Medicinal Pumpkin (Cucurbita Pepo L. Var. Styriaca) under Drought StressAdv. Biores., 8(2): 242-249 (2017).
[23] Belt K., Huan  S., Thatcher L. F., Casarotto H., Singh K. B., Van Aken O., Millar A. H., Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase, J. Plant Physiol., 173: 2029-2040 (2017).
[24] Khan M. I. R., Fatma M., Per T. S., Anjum N. A., Khan N. A., Salicylic Acid-Induced Abiotic Stress Tolerance and Underlying Mechanisms in Plants, Front Plant Sci., 6: 462 (2015).
[25] Srivastava S., Srivastava M., Morphological Changes and Antioxidant Activity of Stevia Rebaudiana under Water Stress, Am. J. Plant. Sci., 5 (22): 3417 (2014).
[26] Benhmimou A., Ibriz M., Al Faïz C., Douaik A., Khiraoui A., Amchra F. Z.,  Lage M., Productivity of New Sweet Plant In Morocco (Stevia Rebaudiana Bertoni) Under Water Stress, J. Med. Plants., 5(5): 126-131 (2017).
[28] Lecroy J.M., “Factors Affecting Seed and Stem Cutting Propagation of Stevia Rebaudiana (BERT.)”, Ph.D Thesis, Mississippi State Uni. Oktibbeha, Mississippi, United States (2014).
[30] Piasecka A., Sawikowska A., Kuczyńska A., Ogrodowicz P., Mikołajczak K., Krystkowiak K., Gudyś K., Guzy‐Wróbelska J., Krajewski P., Kachlicki P., Drought‐Related Secondary Metabolites of Barley (Hordeum Vulgare L.) Leaves and Their Metabolomic Quantitative Trait Loci, Plant J.89(5): 898-913 (2017).
[31] Sancho-Knapik D., Sanz M. Á., Peguero-Pina J. J., Niinemets Ü., Gil-Pelegrín E., Changes of Secondary Metabolites in Pinus Sylvestris L. Needles under Increasing Soil Water Deficit, Ann. for Sci., 74(1): 24- (2017).
[34] Mead R., "The Design of Experiments", Cambridge University Press, Cambridge UK (1990).
[35] Pedroza Carneiro J. W., Stevia Rebaudiana (Bert.) Bertoni: Stages of Plant Development, Can. J. Plant.Sci., 87 (4): 861-865 (2007).
[37] Razmjoo J., Ghafari H., Response of Durum Wheat to Foliar Application of Varied Sources and Rates of Iron Fertilizers, J. Agr. Sci. Tech., 17(2): 321-331 (2015).
[38] Mohamed H. I., Elsherbiny E. A., Abdelhamid M. T., Physiological and Biochemical Responses of Vicia Faba Plants To Foliar Application of Zinc and Iron, Gesunde Pflanzen., 68 (4): 201-212 (2016).
[39] Tayade M., Badge S., Nikam B., Foliar Application of Zinc and Iron as Influenced on Flowering and Quality Parameters of Tuberose, Int. J. Curr. Microbiol. App. Sci., 7 (1): 2239-2243 (2018).
[40] Wang X. Z., Liu D.Y., Zhang W., Wang C. J., Cakmak I.,  Zou C. Q., An Effective Strategy to Improve Grain Zinc Concentration of Winter Wheat, Aphids Prevention and Farmers’ Income, Field Crops Res., 184:74-79 (     ).
[42] Mccready R. M., Guggolz J., Silviera V., Owens H. S., Determination of Starch and Amylose in Vegetables, Anal. Chem., 22 (9): 1156–1158 (1950).
[44] Magangana T. P., Stander M. A., Makunga N. P., Effect of Nitrogen and Phosphate on in Vitro Growth and Metabolite Profiles of Stevia Rebaudiana Bertoni (Asteraceae)Plant Cell Tissue Organ. Cult., 1-11 (2018).
[46] Aladakatti Y.R., Palled Y. B., Chetti M. B., Halikatti S. I., Alagundagi S.C., Patil P. L., Effect of Irrigation Schedule and Planting Geometry on Growth and Yield of Stevia (Stevia Rebaudiana Bertoni.), Karnataka J. Agric. Sci.,25 (1):30-35 (2012).
[47] Akula R., Ravishankar G.A., Influence of Abiotic Stress Signals on Secondary Metabolites in Plants, Plant Signal Behav., 6 (11): 1720-1731 (2011).
[50] Özcan  M. M., Bağcı  A., Dursun  N., Gezgin  S., Hamurcu  M., Dumlupınar  Z., Uslu N., Macro and Micro Element Contents of Several oat (Avena Sativa L.) Genotype and Variety Grains, Iran. J. Chem. Chem. Eng. (IJCCE)., 36 (3): 73-79 (2017).
[52] Tavarini S., Sgherri C., Ranieri A. M., Angelini L. G., Effect of Nitrogen Fertilization and Harvest Time on Steviol Glycosides, Flavonoid Composition, and Antioxidant Properties in Stevia Rebaudiana Bertoni, J. Agric. Food Chem., 63 (31): 7041-7050 (2015).
[54] Das B., Sahoo R. N., Pargal S., Krishna G., Verma R., Chinnusamy V., Sehgal V. K., Gupta V. K., Dash S. K., Swain P., Quantitative Monitoring of Sucrose, Reducing Sugar and Total Sugar Dynamics for Phenotyping of Water-Deficit Stress Tolerance in Rice through Spectroscopy and Hemometrics, Spectrochim Acta. A. Mol. Biomol. Spectrosc., 192:41-51 (2018).
[55] Sami F., Yusuf M., Faizan M., Faraz A., Hayat S., Role of Sugars under Abiotic Stress, Plant Physiol Biochem., 109: 54-61 (2016).
[56] Deswal K., Pandurangam V., Morpho-Physiological and Biochemical Studies on Foliar Application of Zinc, Iron and Boron in Maize (Zea mays L.), J. Pharmacogn Phytochem., 7 (2): 3515-3518 (2018).
[57] Davarpanah S., Tehranifar A., Davarynejad G., Abadía J., Khorasani R., Effects of Foliar Applications of Zinc and Boron Nano-Fertilizers on Pomegranate (Punica granatum cv. Ardestani) Fruit Yield and Quality, Sci. Hort., 210: 57-64 (2016).