Optimization, Equilibrium and Kinetic Studies of Basic Red 2 Removal onto Waste Gossypium hirsutum Seeds

Document Type : Research Article


1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, Tamil Nadu, INDIA

2 Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, Tamil Nadu, INDIA


Cationic dye - basic red 2 (BR2) was removed from aqueous solutions by sulfuric acid activated waste Gossypium hirsutum seeds (WGSAB). The main and interactive effects of five process variables such as, adsorbent dose (1.25 – 5 g/L), initial dye concentration (100–300 mg/L), contact time (1–3 h),  pH (2 – 12) and temperature (20 – 400C) were investigated via  response surface methodology (RSM) based on Box–Behnken statistical design.  The optimum values of the key variables were estimated using Derringer’s desirability function. The optimal values were found to be at an adsorbent dose 2.41 g, initial dye concentration 150 mg/L, pH 8.69, temperature 33.570C, and contact time 1.42 h with the maximum desirability of 91%. The equilibrium data obeyed Redlich-Peterson isotherm which showed that the WGSAB was heterogeneous and BR2 was adsorbed in multilayers. The kinetic investigation showed that the BR2 was chemisorbed on WGSAB surface following Avrami fractional order kinetics. The thermodynamic parameters revealed that the BR2 adsorption process was spontaneous and endothermic. Regeneration of exhausted WGSAB found to be possible via acetic acid as elutant.


Main Subjects

[2] Kumar A., Sharma G., Naushad M., Singh P., Kalia S., Polyacrylamide/Ni0.02Zn0. 98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal, Ind. Eng. Chem. Res., 3(40):15549-60 (2014).
[3] Sivarajasekar N., Mohanraj N., Balasubramani K., Prakash Maran J., Ganesh Moorthy I., Karthik V., Karthikeyan K., Optimization, Equilibrium and Kinetic Studies on Ibuprofen Removal onto Microwave Assisted–Activated Aegle marmelos correa Fruit Shell, Desalination and Water Treatment, 84:48-58 (2017).
[4] Sivarajasekar N., Srileka S., Samson A.P., Robinson S., Saravanan K., Kinetic Modeling for Biosorption of Metylene Blue onto H3PO4 Activated Acacia arabica, Carbon Letters, 9(3):181-7 (2008).
[5] Paramasivan, T., Sivarajasekar N., Muthusaravanan S., Subashini R., Prakashmaran J., Sivamani S., Ajmal Koya P., Graphene Family Materials for the Removal of Pesticides from Water, In: “A New Generation Material Graphene: Applications in Water Technology”, Springer, Cham, pp. 309-327 (2019).
[6] Sivarajasekar, N., Mohanraj N., Sivamani S., Prakash Maran J., Ganesh Moorthy I., Balasubramani K., Statistical Optimization Studies on Adsorption of Ibuprofen onto Albizialebbeck Seed Pods Activated Carbon Prepared Using Microwave Irradiation, Mater Today Proc 5: 7264-74 (2018).
[7] Sivarajasekar N., Paramasivan T., Muthusaravanan S., Muthukumaran P., Sivamani S., Defluoridation of Water Using Adsorbents-A Concise Review, J. Environ. Biotechnol. Res., 6(1):186-98 (2017).
[8] Sivarajasekar N., Baskar R., Agriculture Waste Biomass Valorisation for Cationic Dyes Sequestration: a Concise Review, J. Chem. Pharm. Res., 7(9):737-48 (2015).
[9] Karthik V., Saravanan K., Sivarajasekar N., Suriyanarayanan N., Utilization of Biomass from Trichoderma Harzianum for the Adsorption of Reactive Red Dye, Ecol. Env. & Cons., 22:S435-40 (2016).
[10] Karthik V., Saravanan K., Sivarajasekar N., Suriyanarayanan N., Bioremediation of Dye Bearing Effluents Using Microbial Biomass, Ecol. Env. & Cons., 22:S423-34 (2016).
[11] Sivarajasekar N., Baskar R., Ragu T., Sarika K., Preethi N., Radhika T., Biosorption Studies on Waste Cotton Seed for Cationic Dyes Sequestration: Equilibrium and Thermodynamics, Applied Water Science., 7(4):1987-95 (2017).
 [12] Sivarajasekar N., “Biosorption of Cationic Dyes Using Waste Cotton Seeds”, Ph.D. Thesis, Anna University Chennai, India (2014).
[13] Vijayalakshmi V., Senthilkumar P., Mophin-Kani K., Sivamani S., Sivarajasekar N., Vasantharaj S., Bio-Degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 Isolated from Effluent of Thermal Paper Industry: Kinetic Modeling and Process Optimization, J. Radiat. Res. Appl. Sci., 11:56-65 (2017)
[14] Maran J.P., Priya B., Al-Dhabi N.A., Ponmurugan K., Moorthy I.G., Sivarajasekar N., Ultrasound Assisted Citric Acid Mediated Pectin Extraction from Industrial Waste of Musa balbisiana, Ultrason Sonochem., 35:204-9 (2017).
[15] Sivarajasekar N., Balasubramani K., Mohanraj N., Maran J.P., Sivamani S., Koya P.A., Karthik V., Fixed-Bed Adsorption of Atrazine onto Microwave Irradiated Aegle Marmelos Correa Fruit Shell: Statistical Optimization, Process Design and Breakthrough Modeling. J. Mol. Liq., 241: 823-30 (2017).
[16] Sivarajasekar N., Mohanraj N., Baskar R., Sivamani S., Fixed-Bed Adsorption of Ranitidine Hydrochloride Onto Microwave Assisted—Activated Aegle marmelos Correa Fruit Shell: Statistical Optimization and Breakthrough Modelling, Arabian Journal for Science and Engineering, 43(5): 2205-15 (2017).
[17] Sivarajasekar N., Mohanraj N., Sivamani S., Moorthy G.I., Response Surface Methodology Approach for Optimization of Lead (II) Adsorptive Removal by Spirogyra sp. Biomass, J. Environ. Biotechnol. Res., 6(1):88-95 (2017).
[18] Naushad M., Abdullah ALOthman Z., Rabiul Awual M., Alfadul S.M., Ahamad T., Adsorption of Rose Bengal Dye from Aqueous Solution by Amberlite Ira-938 Resin: Kinetics, Isotherms, and Thermodynamic Studies, Desalin Water Treat., 57(29):13527-33 (2016).
[19] Naushad M., Khan M.A., ALOthman Z.A., Khan M.R., Adsorptive Removal of Nitrate from Synthetic and Commercially Available Bottled Water Samples Using De-Acidite FF-IP Resin, J Ind Eng Chem., 20(5):3400-7 (2014).
[20] Ho Y.S., McKay G., Sorption of Dyes and Copper Ions onto Biosorbents, Process Biochem., 38: 1047-61 (2003).
[21] Alqadami A.A., Naushad M., Abdalla M.A., Khan M.R., Alothman Z.A., Adsorptive Removal of Toxic Dye Using Fe3O4–TSC Nanocomposite: Equilibrium, Kinetic, and Thermodynamic Studies, J. Chem. Eng. Data., 1(11):3806-13 (2016).
[22] Boehm H.P., Surface Oxides on Carbon and their Analysis: a Critical Assessment, Carbon, 40: 145-49 (2002).
[23] Sivarajasekar N., Ramasubbu S., Prakash Maran J., Priya B., Cationic Dyes Sequestration from Aqueous Phase Using Biosurfactant Based Reverse Micelles. In: “Recent Advances in Chemical Engineering”, pp. 67-74. Springer Singapore, (2016).
[24] Box G.E.P., Hunter W.G., Hunter J.S., “Statistics for Experimenters–An Introduction to Design”, Data Analysis and Model Building, New York: NY, John Wiley & Sons. (1978).
[25] Oladipo M.A., Bello I.A., Adeoye D.O., Abdulsalam K.A., Giwa A.A., Sorptive Removal of Dyes from Aqueous Solution: A Review, Adv. Environ. Bio., 7: 3311-27 (2013).
[26] Sivarajasekar, N., Nainamalai Mohanraj, Sivamani S., Ganesh Moorthy I., Ram Kothandan,  Muthusaravanan S., Comparative Modeling of Fluoride Biosorption onto Waste Gossypium Hirsutum Seed Microwave-Bichar Using Response Surface Methodology and Artificial Neural Networks, In: “Intelligent Computing, Instrumentation and Control Technologies (ICICICT)-2017 IEEE Explore”, IEEE, 1631-35 (2017).
[27] Karthik, V., Sivarajasekar, N., Padmanaban, V. C., Nakkeeran, E., & Selvaraju, N., Biosorption of Xenobiotic Reactive Black B onto Metabolically Inactive T. Harzianum Biomass: Optimization and Equilibrium Studies, Int. J. Environ. Sci. Technol., 1-12 (2018).
[28] Derringer G., Suich R., Simultaneous Optimization of Several Response Variables, J. Qual. Technol., 12: 214-19 (1980).
 [30] Sivarajasekar N., Paramasivam T., Subashini R., Prakashmaran J., Kandasamy S., Central Composite Design Optimization of Fluoride Removal by Spirogyra Biomass, Asian J. of Microbiol. Biotech. Env. Sc., 19: S130-S137 (2017).
[31] Aziz A., Ouali M.S., Elandaloussi E.H., De Menorval L.C., Lindheimer M., Chemically Modified Olive Stone: A Low-Cost Sorbent for Heavy Metals and Basic Dyes Removal from Aqueous Solutions, J. Hazard. Mater., 163(1): 441-447 (2009).
[32] Mana M., Ouali M.S., De Menorval L.C., Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth, J. Colloid Interface Sci., 307(1): 9-16 (2007).
[33] Qiu M., Qian C., Xu J., Wu J., Wang G., Studies on the Adsorption of Dyes Into Clinoptilolite, Desalination, 243(1-3):286-92 (2009).
[34] Abdellah Aziz, Mohand Said Ouali, El Hadj Elandaloussi, Louis Charles De Menorval, Marc Lindheimer, Chemically Modified Olive Stone: A Low-Cost Sorbent for Heavy Metals and Basic Dyes Removal from Aqueous Solutions, J. Hazard. Mater., 163: 441- 47 (2009).
[35] Seema Jain, Radha Jayaram, V., Removal of Basic Dyes from Aqueous Solution by Low-Cost Adsorbent: Wood Apple Shell (Feronia acidissima). Desalination, 250: 921- 27 (2010).
[36] Eren E., Cubuk O., Ciftci H., Eren B., Caglar B., Adsorption of Basic Dye from Aqueous Solutions by Modified Sepiolite: Equilibrium, Kinetics and Thermodynamics Study, Desalination, 252: 88-96 (2010).
[37] Vinod V.P, Aniruthan T.S., Sorption of Tannic Acid on Zirconium Pillared Clay, J Chem Tech Biot., 77: 92- 101 (2001).
[38] Senthilkumaar S., Kalaamani P., Subburaam C.V., Liquid Phase Adsorption of Crystal Violet onto Activated Carbons Derived from Male Flowers of Coconut Tree, J. Hazard. Mater.: B, 136, 800-8 (2006).