The Mathematical Description for CoO(OH)-Assisted Hydroxylamine Electrochemical Determination in Neutral Media

Document Type : Research Article

Authors

1 Chernivtsi National University, 58012, Kotsyubyns’ky Str., 2, Chernivtsi, UKRAINE

2 Universidade Federal de Mato Grosso do Sul, Av. Sen. Felinto. Müller, 1555, C/P. 549, 79074-460, Campo Grande, MS, BRAZIL

3 Universidade Estadual do Centro-Oeste, , S 03. CEP: 85040-080 – Guarapuava, PR, BRAZIL

Abstract

The possibility of hydroxylamine electrochemical determination over a CoO(OH)-modified electrode, accompanied by complex-formation, has been studied from the theoretical point of view. The correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It was shown that CoO(OH) may be applied as an efficient electrode modifier in the detection of hydroxylamine in neutral and slightly alkaline media. The electrochemical response has to be clear and easy to interpret. The possibility of the oscillatory and monotonic instabilities has also been verified.

Keywords

Main Subjects


[1] Torkzadeh-Mahani A., Mohammadi A., Torkzadeh-Mahani M., Mohammadi M., Voltammetric Determination of Anticancer Drug Hydroxyurea Using a Carbon Paste Electrode, Incorporating TiO2 Nanoparticles, Anal. Bioanal. Electrochem., 9: 117-125 (2017).
[2] Costa D.J.E., Santos J.C., Sanches-Brandão F.A.C., Ribeiro W.F., Salazar-Banda G.R., Araujo M.C.U., Boron-Doped Diamond Electrode Acting as a Voltammetric Sensor for the Detection of Methomyl Pesticide, J. Electroanal. Chem., 789: 100-107 (2017).
[4] Shu Y., Li B., Xu Q., Gu P., Xiao X., liu F., Yu L., Pang H., Hu X., Cube-like CoSn(OH)6 Nanostructure for Sensitive Electrochemical Detection of H2O2 in Human Serum Sample, Sens. Act. B. Chem., 241: 528-533 (2017).
[6] Ziyatdinova G.K., Kozlova E.V., Budnikov H.C., Chronoamperometric Evaluation of the Antioxidant  Capacity of Tea on a Polyquercetin-ModifiedElectrode, J. Anal. Chem., 72: 382-389 (2017).
[7] Adams M., Overman E., The Reduction of Copper Sulfate with Hydroxylamine, J. Am. Chem. Soc., 31: 637-640 (1909).
[8] Trost B.M., Fleming I., “Comprehensive Organic Synthesis”, Vol. 8. Reduction, Pergamon Press, Oxford – New York – Seoul – Tokyo, (1991).
[10]  H. Lees, Nature, Hydroxylamine as an Intermediate in Nitrification, 169:156- (1952). 
[11] Vajrala N., Martins-Habbena W., Sayavedra-Soto L., Schauer A., Bottomley P.J., Stahl D.A., Arp D.J.Hydroxylamine as an Intermediate in Ammonia Oxidation by Globally Abundant Marine Archaea, Proc. Natl. Acad. Sci. USA., 15: 1006-(2013).
[12] Khomutov M.A., Mandal S., Weissel J., et al., Amino Acids, 38: 509-  (2010).
[13] Lednicer D., “The Organic Chemistry of Drug Synthesis”, Vol. 7, John Wiley and Sons, Hoboken, New Jersey, (2008).
[14] Lednicer D., “Strategies of Organic Drug Synthesis and Design", John Wiley and Sons, Hoboken, New Jersey, (2009).
[15] Evelo C.T., Spooren A.A., Bisschops R.A., Leo Baars G.M., Neis J.M., Two Mechanisms for Toxic Effects of Hydroxylamines in Human Erythrocytes: Involvement of Free Radicals and Risk of Potentiation, Blood Cells Mol. Dis., 24(3): 280-   (1998).
[16]http://www.sciencelab.com/msds.php?msdsId=9927192, access on the 5th of May 2017
[18] Hanna P.E., Metabolic Activation and Detoxification of Arylamines, Curr. Med. Chem., 3: 195-   (1996).
[19] Gross P., Biologic Activity of Hydroxylamine: A Review, Crit. Rev. Toxicol., 14: 87-  (1985)
[20] Sturms R., Di Spirito A.A., Fulton D.B., Hardgrove M.S., Hydroxylamine Reduction to Ammonium by Plant and Cyanobacterial Hemoglobins, Biochemistry, 20:10829- (2011).
[21] Liu Sh., Vereecken H., Brüggemann N., A Highly Sensitive Method for the Determination of Hydroxylamine
in Soils, Geoderma
, 232-234: 117-122 (2014).
[22] Kumar T., Ramya M., Srinivasan V., Xavier N., J. Chromatogr. Sci., 21: 1-   (2017).
[23] George N., Balasubramanian L., Nagaraja K., Ind. J. Chem. Techn., 14: 412-  (2007).
[24] Afkhami A., Madrakian T., Maleki A., Anal. Biochem., 347: 162-  (2005).
[25] Lee E., Kim D., You J.M., et al., J. Nanosci. Nanotechn., 12: 8886-  (2012).
[26] Benvidi A., Jahanbani S., Zare H.R., J. Electroanal. Chem., 758: 68-  (2015).
[27] Wu Y., Zhang K., Xu J., et al., Int. J. Electrochem. Sci., 9: 6594-  (2014).
[28] Guttiérez Peneda E., Alcaide F., Rodríguez Presa M.J., et al., ACS Appl. Mat. Interfaces, 7: 2677-  (2015).
[29] Garkani Nejad F., Beitollahi H., Alizadeh R., Anal. Bioanal. Electrochem., 9: 134-  (2017).
[30] Moghaddam H.M., Beitollahi H., Tajik S., et al., Env. Monit. Access, 186: 7431-  (2014).
[31] Wang Y., Wang L., Chen H., et al., 20: 18173-   (2016).
[32] Ngoc Bui M.P., Pham X-H., Nam Han K., et al., Electrochem. Commun., 12: 250-  (2010).
[33] Raj C.J., Kim B.Ch., Cho W.J., et. al., 747: 130-  (2015).
[34] Stadnik A., “Aplicação de Eletrodos Modificados com Cobalto Como Sensor Eletroquímico”, M.Sc. Tése, Universidade Estadual do Centro-Oeste do Paraná, Guarapuava, (2011).
[35] Stadnik A., Caldas E.M., Galli A., Anaissi F.J., Orbital. Elec. J. Chem., 7: 122-  (2015).
[36] Bonini J.S., Mariani F.Q., Guimarães Castro E., et. al., Orbital Elec. J. Chem., 7: 318-  (2015).
[37] Stadnik O., Ivanova N., Boldyrev Y., 218th  Int. Electrochem. Soc. Meeting, Abstract # 2240,
[38] Stadnik O. Synthesis, Electrochemical and Photoelectrochemical Properties of the Oxide-hydroxide Compounds of Cobalt, Diss. Kand. Chim. N. – Kyiv. – (2011).
[39] Pearlstein A.J., Johnson J.A., J. Electrochem. Soc., 136: 1290-  (1991).
[40] Rahman S.U., Ba-Shammakh M.S., Synth. Met., 140: 207-  (2004).
[41] Das I., Agrawal N.R., Ansari S.A., Gupta S.K., Ind. J. Chem, 47: 1798-   (2008).
[42] Das I., Goel N., Gupta S.K., Agrawal N.R., J. Electroanal. Chem., 670: 1-   (2012).
[43] Tkach V., de Oliveira S.C., Maia G., et. al., Mor. J. Chem., 4: 112-   (2016).
[44] Tkach V., Ivanushko Ya., Lukanova S.M., et. al., Appl. J. Envir. Eng. Sci., 3: 90-   (2017).
[45] Tkach V.V., de Oliveira S.C., Anaissi F.J., Ojani R., Neves  V.S., Galeano Espínola M.O., Yagodynets P.I.,The Possibility of the Use of CoO(OH) as an Electrode Modifier for Hydrazine Detection and Its Mathematical Evaluation, Anal. Bioanal. Electrochem., 8: 557-565 (2016).
[46] Tkach V., Ivanushko Ya., de Oliveira S.C., da Silva G.R.., Ojani R., Yagodynets P.I.,, The Theoretical Evalution of the Posiibility of OF CoO(OH)-Assisted Omeprazole Electrochemical Detection, Anal. Bioanal. Electrochem., 8: 749-760 (2016).
[47] Tkach V., de Oliveira S.C., Neves V.,     Ojani R., Yagodynets P.I., The Mechanistic Investigation for the Possibility of the Use of CoO(OH) as an Electrode Modifier for Analysis of Complex forming Substances, Mor. J. Chem., 4(3): 678-683 (2016).
[48] Tkach V., Ivanushko Ya., de Oliveira S.C., Ojani R., Yagodynets P.I.,“LA EVALUACIÓN DE LA POSIBILIDAD DEL USO DEL OXIHIDRÓXIDO DE COBALTO COMO MATERIAL MODIFICADOR DE ELECTRODO PARA LA DETECCIÓN ELECTROQUÍMICA DE LA PESTICIDA DIQUAT”, Anales Soc. Arg. Química, 101(2016), N. 10-051, Anales del XXXI Congreso Argentino de Química, 25 al 28 de Octubre (2016)
[49] Bull D.J., Creaser I.I., Sargeson A.M., et al., Inorg. Chem., 26: 3040-   (1987).