Antibacterial Activity of the Lipopeptide Biosurfactant Produced by Bacillus mojavensis PTCC 1696

Document Type : Research Article

Authors

1 Administration of Technology Affairs, Deputy of Engineering, Research and Technology, Ministry of Petroleum of Iran, Tehran, I.R. IRAN

2 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

Abstract

Bacillus mojavensis PTCC 1696 (a member of Bacillus subtilis group) has been isolated from the Iranian oil field (Masjed-I Soleyman), to examine its ability to produce biosurfactant (lipopeptide type) [28]. The present study was designed to characterize the antibacterial activity of the isolated biosurfactant. The antibacterial activity towards several bacteria including clinical isolates and type strains species was examined. For detecting the extent of antibacterial activity, the agar disc diffusion method was used, where the measured diameter of the zone of inhibition was used as an index for determining the antibacterial activity. Among the test microorganisms, the antibacterial activity was highest in Pseudomonas aeruginosa ATCC 27853. At concentration as low as 16 μg/ml, the inhibitory effect of the lipopeptide biosurfactant was detectable. The stability of the test biosurfactant also was examined over a wide range of temperatures (40–100°C)and pH values (2-11). The stability was further tested using protease and lipase, where the substance showed clear sensitivity towards lipase. The potentiality of this antibacterial agent in clinical applications is of interest and needs to be further recognized.

Keywords

Main Subjects


[1] Marchant R., Banat I.M., Biosurfactants: A Sustainable Replacement for Chemical Surfactants?, Biotechnol. Lett., 34: 1597-1605 (2012).
[2] He C., Dong W., Li J., Li Y., Huang C., Ma Y., Characterization of Rhamnolipid Biosurfactants Produced by Recombinant Pseudomonas aeruginosa Strain DAB with Removal of Crude Oil, Biotechnol. Lett., 39 (9): 1381-1388 (2017).
[4] Singh A., Van Hamme J.D., Ward O.P., Surfactants in Microbiology and Biotechnology: Part 2. Application Aspects, ‎Biotechnol. Adv., 25: 99-121 (2007).
[5] Nitschkea M., Costa S.G.V.A.O., Biosurfactants in Food Industry, Trends. Food. Sci. Technol., 18: 252-259 (2007).
[6] Winterburn J.B., Martin P.J., Foam Mitigation and Exploitation in Biosurfactant Production, Biotechnol. Lett., 34: (2) 187-195 (2012).
[7] Imura T., Ito S., Azumi R., Yanagishita H., Sakai H., Abe M., Kitamoto D., Monolayers Assembled
from a Glycolipid Biosurfactant from Pseudozyma (Candida) Antarctica Serve as a High-Affinity Ligand System for Immunoglobulin G and M
, Biotechnol. Lett., 29 (6): 865-870 (2007).
[8] Cameotra S.S., Makkar R.S., Recent Applications of Biosurfactants as Biological and Immunological Molecules, Curr. Opin. Microbiol., 7: 262–266 (2004).
[9] Leathers T.D., Price N.P., Bischoff K.M., Manitchotpisit P., Skory C.D., Production of Novel Types of Antibacterial Liamocins by Diverse Strains of Aureobasidium Pullulans Grown on Different Culture Media, Biotechnol. Lett., 37(10): 2075–2081 (2015).
[10] Singh P., Cameotra S.S., Potential Applications of Microbial Surfactants in Biomedical Sciences, Trends. Biotechnol., 22 (3): 142-146 (2004).
[11] Rodrigues L., Banat I.M., Teixeira J., Oliveira R., Biosurfactants: Potential Applications in Medicine, J. Antimicrob. Chemother., 57: 609–618 (2006).
[12] Elshikh O., Ahmed S., Funston S., Dunlop P., McGaw M., Marchant R., Banat I.M., Resazurin-Based 96-Well Plate Microdilution Method for the Determination of Minimum Inhibitory Concentration of Biosurfactants, Biotechnol. Lett., 38(6): 1015–1019 (2016).
[13] Ghribi D., Abdelkefi-Mesrati L., Mnif I., Kammoun R., Ayadi I., Saadaoui I., Maktouf S., Chaabouni-Ellouze S., Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation, J. Biomed. Biotechnol., 2012: 1-12 (2012).
[14] Luna J.M.,  Rufino R.D., Sarubbo L.A., Rodrigues L.R.M., Teixeira J.A.C., Campos-Takaki G.M., Evaluation Antimicrobial and Antiadhesive Properties of the Biosurfactant Lunasan Produced by Candida sphaerica UCP 0995, Curr. Microbiol., 62: 1527-1534 (2011).
[15] Gudiña E.J., Rocha V., Teixeira J.A., Rodrigues L.R., Antimicrobial and Antiadhesive Properties of a Biosurfactant Isolated from Lactobacillus paracasei ssp. paracasei A20, Lett. Appl. Microbiol., 50 (4): 419-424 (2010).
[16] Rufino R.D., Luna J.M., Sarubbo L.A., Rodrigues L.R.M., Teixeira J.A.C., Campos-Takaki G.M., Antimicrobial and Anti-Adhesive Potential of a Biosurfactant Rufisan Produced by Candida lipolytica UCP 0988, Colloids. Surf. B. Biointerfaces., 84: 1-5 (2011)
[17] Steenbergen J.N., Alder J., Thorne G.M., Tally F.P., Daptomycin: a Lipopeptide Antibiotic for the Treatment of Serious Gram-Positive Infections, J. Antimicrob. Chemother., 55: 283-288 (2005).
[18] Sansinenea E., Ortiz A., Secondary Metabolites of Soil Bacillus spp., Biotechnol. Lett., 33 (8): 1523-1538 (2011).
[19] Bach H., Gutnick D.L., Potential Applications of Bioemulsifiers in the Oil Industry. In: Petroleum Biotechnology, Developments and Perspectives. “Studies in Surface Science and Catalysis” Vol. 151 (2004).
[20] Bechard J., Eastwell K.C., Mazza G., Skura B., Isolation and Partial Chemical Characterization of an Antimicrobial Peptide Produced by a Strain of Bacillus subtilis, J. Agric. Food. Chem., 46(12): 5355-5361 (1998).
[21] Yakimov M.M., Timmis K.N., Wray V., Fredrickson H.L., Characterization of a New Lipopeptide Surfactant Produced by Termotolerant and Halotolerant Subsurface Bacillus licheniformis BAS50, Appl. Environ. Microbiol., 1706-1713 (1995).
[23] Motta A.S., Cannavan F.S., Tsai S.M., Brandelli A., Characterization of a Broad Range Antibacterial Substance from a New Bacillus Species isolated from Amazon Basin, Arch. Microbiol., 188: 367-375 (2007).
[24] Olivera F.C., Caron G.R., Brandelli A., Bacteriocin-Like Substance Production by Bacillus licheniformis Strain P40, Lett. Appl. Microbiol., 38: 251-256 (2004).
[25] Thorne G.M., Alder J., Daptomycin: a Novel Lipopeptide Antibiotic, Clin. Microbiol. Newsl., 24: 33-40 (2002).
[26] Ahn C.Y., Joung S.H., Jeon J.W., Kim H.S., Yoon B.D., Oh H.M. Selective Control of Cyanobacteria by Surfactin-Containing Culture Broth of Bacillus subtilis C1, Biotechnol. Lett., 25 (14): 1137-1142 (2003).
[27] Nielsen T.H., Sørensen D., Tobiasen C., Andersen J.B., Christophersen C., Givskov M., Sørensen J., Antibiotic and Biosurfactant Properties of Cyclic Lipopeptides Produced by Fluorescent Pseudomonas spp. from the Sugar Beet Rhizosphere, Appl. Environ. Microbiol., 68 (7): 3416-3423 (2002).
[28] Ghojavand H., Vahabzadeh F., Mehranian M., Radmehr M., Shahraki A.K., Zolfagharian F.,
Emadi M.A., Roayaei E., Isolation of Thermotolerant, Halotolerant, Facultative Biosurfactant Producing Bacteria, Appl. Microbiol. Biotechnol., 80: 1073-1085 (2008).
[29] Cladera-Olivera F., Caron G.R., Brandelli A., Bacteriocin-Like Substance Production by Bacillus licheniformis Strain P40, Lett. Appl. Microbiol., 38: 251-256 (2004).
[30] Yeh M.S., Wei Y.H., Chang J.S., Bioreactor Design for Enhanced Carrier-Assisted Surfactin Production with Bacillus subtilis, Process. Biochem., 41: 1799-1805 (2006).
[31] Kim H.S., Yoon B.D., Lee C.H., Suh H.H., Oh H.M., Katsuragy T., Production and Properties of a Lipopeptide Biosurfactant from Bacillus subtilis C9, J. Ferment. Bioeng., 84: 41-46 (1997).
[32] Cooper D.G., MacDonald C.R., Duff S F.B., Kosaric N., Enhanced Production of Surfactin From Bacillus subtilis by Continuous Product Removal and Metal Cation Additions, Appl. Environ. Microbiol., 42: 408–412 (1981).
[33] Lin S.C., Carswell K.S., Sharma M.M., Georgiou G., Continuous Production of the Lipopeptide Biosurfactant of Bacillus licheniformis JF-2, Appl. Microbiol. Biotechnol., 41: 281-285 (1994).
[34] Mukherjee A.K., Das K., Microbial surfactants and Their Potential Applications, In: “Biosurfactants Advances in Experimental Medicine and Bbiology”, Vol. 672, Springer Science+Business Media, LLC. Landes Bioscience, (2010).
[35] Ben Ayed H., Jridi M., Maalej H., Nasri M., Hmidet H., Characterization and Stability of Biosurfactant Produced by Bacillus Mojavensis A21 and Its Application in Enhancing Solubility of Hydrocarbon,
J. Chem Technol. Biotechnol., 89: 1007-1014 (2014).
[37] Baindara P., Mandal S.M., Chawla N., Singh P.K., Pinnaka A.K., Korpole S., Characterization of Two Antimicrobial Peptides Produced by a Halotolerant Bacillus subtilis Strain SK.DU.4 Isolated from a Rhizosphere Soil Sample, AMB Express 3: 2 (2013).
[38] Mah T.F., O’Toole G.A., Mechanisms of Biofilm Resistance to Antimicrobial Agents, Trends. Microbiol., 9: 34-39, (2001).
[39] Cao X.H., Liao Z.Y., Wang C.L., Yang W.Y., Lu M.F., Evaluation of a Lipopeptide Biosurfactant from Bacillus natto TK-1 as a Potential Source of Anti-Adhesive, Antimicrobial and Antitumor Activities, Braz. J. Microbiol., 40: 373-379 (2009).
[40] Fang X., Fang Z., Zhao J.,  Zou Y.,  Li T.,  Wang J.,  Guo Y.,  Chang D.,  Su L., Ni P.,  Liu C., Draft Genome Sequence of Pseudomonas aeruginosa Strain ATCC 27853, J. Bacteriol., 194 (14): 3755 (2012)
[41] Matzneller P., Manafi M., Zeitlinger M. Antimicrobial Effect of Statins: Organic Solvents Might Falsify Microbiological Testing Results, Int. J. Clin. Pharmacol. Ther., 49: 666-671 (2011).
[42] Tabbene O., Kalai L., Slimene I.B., Karkouch I., Elkahoui S., Gharbi A., Cosette P., Mangoni M.L., Jouenne T., Limam F., Anti-Candida effect of Bacillomycin D-like Lipopeptides from Bacillus subtilis B38, FEMS Microbiol. Lett., 316: 108-114 (2011).
[43] Tabbene O., Slimene I.B., Bouabdallah F., Mangoni M.L., Urdaci M.C., Limam F., Production of Anti-Methicillin-Resistant Staphylococcus Activity from Bacillus subtilis sp. Strain B38 Newly Isolated from Soil, Appl. Biochem. Biotechnol., 157: 407-719 (2009).
[44] D’Costa V.M., Mukhtar T.A., Patel T., Koteva K., Waglechner N., Hughes D.W., Wright G.D.,
Pascale G.D., Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms, Antimicrob. Agents. Chemother., 56 (2): 757–764 (2012).