Facile and Economic Method for the Preparation of Core-Shell Magnetic Mesoporous Silica

Document Type : Research Article


1 Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, I.R. IRAN

2 Institute for Applied Surfactant Research and School of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, UNITED STATES


In this work core-shell structure Fe3O4@SiO2@meso-SiO2 microsphere has been successfully prepared. An inorganic magnetic core has been coated with multi-shell structure, dense nonporous silica as an inner layer and mesoporous silica as an outer layer. The dense silica shell can enhance the stability and minimize the negative effect of acidic conditions on the inner core and the porous outer shell can provide high surface area and enhance the loading of a functionalized group. Cetyltrimethylammonium bromide (CTAB) has been used as a pore-forming agent and a modified methodology was adopted to improve the extraction condition of this kind of surfactant. The as-prepared microspheres were characterized by Field Emission Scanning Electron Microscope (FESEM), X-Ray Diffraction (XRD), Fourier Transform InfraRed (FT-IR) spectroscopy, Vibration Sample Magnetometer (VSM), N2 adsorption-desorption, and Particle Size Analyzer (PSA). The resulted materials possessing uniform core-shell structure, and well preserved structural stability. Additionally, they can be collected readily by using an external magnetic field. The prepared material has considerable potential applications in various fields including catalysis, drug delivery, and water treatment. 


Main Subjects

[2] Lin F., Wang K., Tang Y., Lai J., Lou M., Huang M., Guo S. Enhanced Bifunctional Fuel Cell Catalysis via Pd/PtCu Core/Shell Nanoplates, Chemical Communications, 54(11):  1315-1318 (2018).
[3] Zhang X., Wang J., Preparation of Carbon Coated Fe3O4 Nanoparticles for Magnetic Separation of Uranium, Solid State Sciences. 75:  14-20 (2018).
[4] Nasrallah G.K., Zhang Y., Zagho M.M., Ismail H.M., Al-Khalaf A A., Prieto R M., Albinali K E., Elzatahry A A., Deng Y., A Systematic Investigation of the Bio-Toxicity of Core-Shell Magnetic Mesoporous Silica Microspheres Using Zebrafish Model, Microporous and Mesoporous Materials. 265:  195-201 (2018).
[5] Mohammadi Ziarani G., Saidian F., Gholamzadeh P., Badiei A., Abolhasani Soorki A. Green Synthesis of Pyrazol‑chromeno[2,3‑d]pyrimidinones Using SBA-Pr-SO3H as an Efficient Nanocatalyst, Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 36(6):  39-48 (2017).
[6] Dolatyari L., Yaftian M R. ,Rostamnia S. Th(IV)/U(VI) Sorption on Modified SBA–15 Mesoporous Materials in Fixed–Bed Column, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(6):  115-125 (2017).
[7] Ahmadi S H., Davar P. ,Manbohi A. Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(1):  63-73 (2016).
8. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D. Amino-Functionalized Fe3O4@ SiO2 Core–Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal, Journal of Colloid and Interface Science, 349(1):  293-299 (2010).
[10] Yang P., Quan Z., Hou Z., Li C., Kang X., Cheng Z., Lin J., A Magnetic, Luminescent and Mesoporous Core–Shell Structured Composite Material as Drug Carrier, Biomaterials, 30(27):  4786-4795 (2009).
[11] Yuan Q., Li N., Chi Y., Geng W., Yan W., Zhao Y., Li X., Dong B., Effect of Large Pore Size of Multifunctional Mesoporous Microsphere on Removal of Heavy Metal Ions, Journal of Hazardous Materials, 254:  157-165 (2013).
[12] Adamski J., Qadir M I., Serna J P., Bernardi F., Baptista D L., Salles B R., Novak M A., Machado G., Dupont J. Core–Shell Fe–Pt Nanoparticles in Ionic Liquids: Magnetic and Catalytic Properties, The Journal of Physical Chemistry C., 122(8):  4641-4650 (2018).
[13] Sağ Y. Biosorption of Heavy Metals by Fungal Biomass and Modeling of Fungal Biosorption: A Review, Separation & Purification Reviews, 30(1):  1-48 (2001).
[14] Liu H., Ji S., Yang H., Zhang H., Tang M. Ultrasonic-Assisted Ultra-Rapid Synthesis of Monodisperse Meso-SiO2@ Fe3O4 Microspheres with Enhanced Mesoporous Structure, Ultrasonics Sonochemistry, 21(2):  505-512 (2014).
[15] Kheshti Z. ,Hassanajili S. Surfactant Removal from Mesoporous‎ Silica Shell of Core-Shell Magnetic‎ Microspheres by Modified Supercritical‎ CO2‎, International Journal of Nanoscience and Nanotechnology, 13(2): 119-127 (2017).
[16] Kupai J., Razali M., Buyuktiryaki S., Kecili R., Szekely G. Long-Term Stability and Reusability of Molecularly Imprinted Polymers, Polymer chemistry. 8(4):  666-673 (2017).
[17] Yuan Q., Chi Y., Yu N., Zhao Y., Yan W., Li X., Dong B., Amino-functionalized Magnetic Mesoporous Microspheres with Good Adsorption properties, Materials Research Bulletin, 49:  279-284 (2014).
[18] Buxton A., Livingston A G., Pistikopoulos E.N., Optimal Design of Solvent Blends for Environmental Impact Minimization, AIChE Journal, 45(4):  817-843 (1999).
[19] Slater C.S., Savelski M.J., Ruiz-Felix M.N., Life Cycle Analysis of Solvent Reduction in Pharmaceutical Synthesis Using Continuous Adsorption for Palladium Removal, Journal of Environmental Science and Health, Part A. 48(13):  1602-1608 (2013).
[20] Schaepertoens M., Didaskalou C., Kim J F., Livingston A G., Szekely G., Solvent Recycle with Imperfect Membranes: A Semi-Continuous Workaround for Diafiltration, Journal of Membrane Science. 514:  646-658 (2016).
[21] Didaskalou C., Buyuktiryaki S., Kecili R., Fonte C P., Szekely G., Valorisation of Agricultural Waste with an Adsorption/Nanofiltration Hybrid Process: from Materials to Sustainable Process Design, Green Chemistry. 19(13):  3116-3125 (2017).
[22] Yue Q., Zhang Y., Jiang Y., Li J., Zhang H., Yu C., Elzatahry A A., Alghamdi A., Deng Y., Zhao D. Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness, Journal of the American Chemical Society, 139(13):  4954-4961 (2017).
[23] Yue Q., Li J., Zhang Y., Cheng X., Chen X., Pan P., Su J., Elzatahry A A., Alghamdi A., Deng Y. Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell, Journal of the American Chemical Society, 139(43):  15486-15493 (2017).
[24] Tai Z., Isaacs M.A., Parlett C M., Lee A.F., Wilson K., High Activity Magnetic Core-Mesoporous Shell Sulfonic Acid Silica Nanoparticles for Carboxylic Acid Esterification, Catalysis Communications. 92:  56-60 (2017).
[25] Gao J., Kong W., Zhou L., He Y., Ma L., Wang Y., Yin L., Jiang Y. Monodisperse Core-Shell Magnetic Organosilica Nanoflowers with Radial Wrinkle for Lipase Immobilization, Chemical Engineering Journal. 309:  70-79 (2017).
[27] Koneracká M., Kopčanský P., Antalı́k M., Timko M., Ramchand C.N., Lobo D., Mehta R.V., Upadhyay R.V., Immobilization of Proteins and Enzymes to Fine Magnetic Particles, Journal of Magnetism and Magnetic Materials. 201(1–3):  427-430 (1999).
[28] Luo B., Song X-J., Zhang F., Xia A., Yang W-L., Hu J-H., Wang C-C. Multi-Functional Thermosensitive Composite Microspheres with High Magnetic Susceptibility Based on Magnetite Colloidal Nanoparticle Clusters, Langmuir, 26(3): 1674-1679 (2010).
[29] Deng Y., Qi D., Deng C., Zhang X., Zhao D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins, Journal of the American Chemical Society, 130(1):  28-29 (2008).
[30] Ou Q., Zhou L., Zhao S., Geng H., Hao J., Xu Y., Chen H., Chen X. Self-Templated Synthesis of Bifunctional Fe3O4@MgSiO3 Magnetic Sub-Microspheres for Toxic Metal Ions Removal, Chemical Engineering Journal, 180: 121-127 (2012).
[32] Ren Y., Abbood H.A., He F., Peng H., Huang K., Magnetic EDTA-Modified Chitosan/SiO2/Fe3O4 Adsorbent: Preparation, Characterization, and Application in Heavy Metal Adsorption, Chemical Engineering Journal, 226:  300-311 (2013).
[33] Wang X., Wang L., He X., Zhang Y., Chen L. A Molecularly Imprinted Polymer-Coated Nanocomposite of Magnetic Nanoparticles for Estrone Recognition, Talanta., 78(2): 327-332 (2009).