The First Pyrazolium-Based Ionic Liquid Containing Phosphotungstic Acid Immobilized on CuFe2O4@SiO2: A Recyclable Organic-Inorganic Nanohybrid Catalyst for the Synthesis of Polyhydroquinolines

Document Type : Research Article


1 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN

2 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN


A new magnetically separable organic-inorganic nanohybrid catalyst denoted as CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW was successfully prepared by grafting of a functionalized ionic liquid containing a pyrazolium cation with a phosphotungstic counter-anion H2PW12O40¯ (H2PW) on silica-coated copper ferrite magnetic nanoparticles (CuFe2O4@SiO2). The prepared catalyst was fully characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, inductively coupled plasma optical emission spectrometry, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The catalytic activity of CuFe2O4@SiO2@C3-Pyrazole-C4SO3-H2PW as a novel heterogeneous catalyst was probed in the synthesis of polyhydroquinolines by one-pot condensation of dimedone, an aromatic aldehyde, ammonium acetate, and ethyl acetoacetate. The results demonstrated a significant catalytic performance of the catalyst for this transformation under solvent-free conditions, giving high yields of the products over short reaction time. Also, the magnetic nanocatalyst could be easily recovered from the reaction mixture and reused many times with no significant loss of its catalytic activity.


Main Subjects

[2] Vekariya R.L., A Review of Ionic Liquids: Applications Towards Catalytic Organic Transformations, J. Mol. Liq., 227: 44-60 (2017).
[3] Greaves T.L., Drummond C.J., Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications, Chem. Rev., 115(20): 11379-11448 (2015).
[4] Davoodnia A., Khojastehnezhad A., Bakavoli M., Tavakoli-Hoseini N., SO3H-Functionalized Ionic Liquids: Green, Efficient and Reusable Catalysts for the Facile Dehydration of Aldoximes into Nitriles, Chin. J. Chem., 29(5): 978-982 (2011).
[6] Dehghan M., Davoodnia A., Bozorgmehr M.R., Bamoharram F.F., Evaluation of Catalytic Activity of Two Newly Prepared Functionalized Sulfonic Acids Ionic Liquids in the Synthesis of Carbamatoalkyl Naphthols Under Mild Conditions, Russ. J. Gen. Chem., 87(2): 311-315 (2017).
[9] Wight A.P., Davis E., Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 102(10): 3589-3614 (2002).
[10] Bhanja P., Bhaumik A., Organic-Inorganic Hybrid Metal Phosphonates as Recyclable Heterogeneous Catalysts, Chem. Cat. Chem., 8(9): 1607-1616 (2016).
[13] Wang D., Astruc D., Fast-Growing Field of Magnetically Recyclable Nanocatalysts, Chem. Rev., 114(14): 6949-6985 (2014).
[14] Wu L., Mendoza-Garcia A., Li Q., Sun S., Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications, Chem. Rev., 116(18): 10473-10512 (2016).
[17] Pourjavadi A., Hosseini S.H., AghayeeMeibody S.A., Hosseini S.T., Poly(basic ionic liquid) Coated Magnetic Nanoparticles: High-Loaded Supported Basic Ionic Liquid Catalyst, C. R. Chim., 16(10): 906-911 (2013).
[25] Davoodnia A., Khojastehnezhad A., Carbon-Based Solid Acid Catalyzed Synthesis of Polyhydroquinoline Derivatives via Hantzsch Reaction Under Solvent-Free Conditions, J. Chil. Chem. Soc., 57(4): 1385-1387 (2012).
[26] Khashi M., Allameh S., Beyramabadi S.A., Morsali A., Dastmalchian E., Gharib A., BiFeO3 Magnetic Nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives, Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 45-52 (2017).
[30] Mohammadi Ziarani G., Badiei A.R., Khaniania Y., Haddadpour M., One-Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst Under Solvent Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 29(2): 1-10 (2010).
[33] Kidwai M., Chauhan R., Bhatnagar D., Singh A. K., Mishra B., Dey S., Nafion-H®-Catalyzed Synthesis of Polyhydroquinolines via The Hantzsch Multicomponent Reaction, Monatsh. Chem., 143(12): 1675-1680 (2012).
[34] Tajbakhsh M., Alaee E., Alinezhad H., Khanian M., Jahani F., Khaksar S., Rezaee P., Tajbakhsh M., Titanium Dioxide Nanoparticles Catalyzed Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives, Chin. J. Catal., 33(9): 1517-1522 (2012).
[37] Wang L.M., Sheng J., Zhang L., Han J.W., Fan Z.Y., Tian H., Qian C.T., Facile Yb(OTf)3 Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives Through Hantzsch Reaction, Tetrahedron, 61(6): 1539-1543 (2005).
[38] Sapkal S.B., Shelke K.F., Shingate B.B., Shingare M., Nickel Nanoparticle-Catalyzed Facile and Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation Under Solvent-Free Conditions, Tetrahedron Lett., 50(15): 1754-1756 (2009).
[39] Mekheimer R.A., Hameed A.A., Sadek K.U., Solar Thermochemical Reactions: Four-Component Synthesis of Polyhydroquinoline Derivatives Induced by Solar Thermal Energy, Green Chem., 10(5): 592-593 (2008).
[41] Shimizu K., Furukawa H., Kobayashi N., Itaya Y., Satsuma A., Effects of Brønsted and Lewis Acidities on Activity and Selectivity of Heteropolyacid-Based Catalysts for Hydrolysis of Cellobiose and Cellulose, Green Chem., 11(10): 1627-1632 (2009).
[45] Hamadi H., Kooti M., Afshari M., Ghiasifar Z., Adibpour N., Magnetic Nanoparticle Supported Polyoxometalate: An Efficient and Reusable Catalyst for Solvent-Free Synthesis of α-Aminophosphonates, J. Mol. Catal. A: Chem., 373: 25-29 (2013).
[46] Zhang Z., Zhang F., Zhu Q., Zhao W., Ma B., Ding Y., Magnetically Separable Polyoxometalate Catalyst for the Oxidation of Dibenzothiophene With H2O2, J. Colloid Interface Sci.,360(1): 189-194 (2011).
[47] Cui X., Yao D., Li H., Yang J., Hu D., Nano-Magnetic Particles as Multifunctional Microreactor for Deep Desulfurization, J. Hazard. Mater., 205-206: 17-23 (2012).
[48] Davoodnia A., Roshani M., Saleh Nadim E., Bakavoli M., Tavakoli Hoseini N., Microwave-Assisted Synthesis of New Pyrimido[4′,5′:4,5]thiazolo[3,2-a] benzimidazol-4(3H)-one Derivatives in Solvent-Free Condition, Chin. Chem. Lett.,18(11): 1327-1330 (2007).
[49] Davoodnia A., Bakavoli M., Bashash M., Roshani M., Zhiani R., Synthesis of New 5-Arylpyrido[3′,2′:4,5]thieno[2,3-e] [1,2,3,4]tetrazolo [1,5-c]pyrimidine Derivatives, Turk. J. Chem., 31(6): 599-603 (2007).
[50] Ameli S., Davoodnia A., Pordel M., Behmadi H., Synthesis of New Imino Containing Tetrahydrochromeno[2,3-d]pyrimidines, J. Heterocycl. Chem., 54(2): 1437-1441 (2017).
[52] Yassaghi G., Davoodnia A., Allameh S., Zare-Bidaki A., Tavakoli-Hoseini N., Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones, Bull. Korean Chem. Soc., 33(8): 2724-2730 (2012).
[56] Lee B., Kang P., Lee K.H., Cho J., Nam W., Lee W.K., Hur N.H., Solid-State and Solvent-Free Synthesis of Azines, Pyrazoles, and Pyridazinones Using Solid Hydrazine, Tetrahedron Lett., 54(11): 1384-1388 (2013).