Synthesis of La1-xSrxAlO3 Perovskites by Reverse Strike Co-Precipitation Method and Its Soot Oxidation Activity

Document Type : Research Article


1 Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, 576104, INDIA

2 Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, INDIA


La1-xSrxAlO3 (x=0 to 0.4) perovskite materials were synthesized by the reverse strike co-precipitation method and their soot oxidation activity was evaluated. All the catalysts synthesized were characterized using XRD, BET specific surface area, FESEM and XPS techniques. As analyzed by XRD, La1-xSrxAlO3 perovskite from x=0 to 0.35 showed the formation of the rhombohedralphase, while for La0.6Sr0.4AlO3 sample the secondary phases SrO, La2O3, and Al2O3 were also noticed. Sr-doped samples exhibited higher BET specific surface area when compared to pure LaAlO3. FESEM analysis showed that there is a change in morphology upon doping of Sr into LaAlO3 lattice. The O1s spectra observed from XPS analysis showed that the La0.75Sr0.25AlO3 sample contained higher amounts of adsorbed oxygen. La, Sr, and Al existed in +3, +2 and +3 oxidation states respectively in all the synthesized samples as confirmed by XPS. Soot oxidation activity tests showed that La0.75Sr0.25AlO3 exhibited higher catalytic activity relative to other catalysts due to the enhanced amount of reactive adsorbed oxygen species.


Main Subjects

[1] Royer S., Duprez D., Can F., Courtois X., Batiot-Dupeyrat C., S. Laassiri, H. Alamdari, Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality, Chem. Rev., 114: 10292-10368 (2014).
[2] Keav S., Matam S., Ferri D., Weidenkaff A., Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review, Catalysts, 4: 226–255 (2014)
[3] Tanaka H., Misono M., Advances in Designing Perovskite Catalysts, Curr. Opin. Solid State Mater. Sci., 5: 381–387 (2001).
[4] Leistner K., Nicolle A., Da Costa P., Impact of the Catalyst/Soot Ratio on Diesel Soot Oxidation Pathways, Energy and Fuel, 26: 6091–6097 (2012).
[5] Liu X., Su W., Lu Z., Liu J., Pei L., Liu W., He L., Mixed Valence State and Electrical Conductivity
of  La1-xSrxCrO3,
J. Alloys Compd., 305: 21–23 (2000).
[6] Tabata K., Kohiki S., Catalytic Properties and Surface States of La1-x(Th, Sr)xCoO3, J. Mater. Sci., 22: 3781–3783 (1987).
[7] Deng J., Zhang L., Dai H., He H., Au C.T., Strontium-Doped Lanthanum Cobaltite and Manganite: Highly Active Catalysts for Toluene Complete Oxidation, Ind. Eng. Chem. Res., 47: 8175–8183 (2008).
[8] Kim C.H., Qi G., Dahlberg K., Li W., Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust, Science, 327:1624–1627 (2010).
[9] Harshini D., Yoon C.W., Han J., Yoon S.P., Nam S.W., Lim T.-H., Catalytic Steam Reforming of Propane over Ni/LaAlO3 Catalysts: Influence of Preparation Methods and OSC on Activity and Stability, Catal. Letters, 142: 205–212 (2012).
[10] Piumetti M., Russo N., Miceli P., Bensaid S., Russo N., Fino D., Bensaid S., Russo N., Fino D., Study on the CO Oxidation over Ceria-Based Nanocatalysts, Nanoscale Res. Lett., 11: 165-     (2016).
[12] Doggali P., Subrt Æ.S.B.Æ.J., Haneda T.M.Æ.H., Labhsetwar Æ.N., Low Cost Ceria Promoted Perovskite Type Catalysts for Diesel Soot Oxidation, Catal. Lett., 131:137–143. (2008).
[13] Azough F., Wang W., Freer R., The Crystal Structure of LaAlO3 Stabilized LaTiO3 Ceramics: An HRTEM Investigation, J. Am. Ceram. Soc., 92:2093–2098 (2009).
[15] Zhang S., Pang R., Jiang L., Li D., Jia Y., Li H., Sun W., Li C., Highly Active MnOx–CeO2 Catalyst for Diesel Soot Combustion, RSC Advances, 7: 3233-3239 (2015).
[16] Guiti F., Olga C., An Efficient and Recyclable 3D Printed α-Al2O3 Catalyst for the Multicomponent Assembly of Bioactive Heterocycles, Applied Catal. A, Gen., (2016). doi:10.1016/j.apcata.2016.11.031.
[17] Prasad D.H., Park S.Y., Oh E., Ji H., Kim H., Yoon K., Son J., Lee J., Synthesis of Nano-Crystalline La1– x Sr xCoO3 Perovskite Oxides by EDTA – Citrate Complexing Process and its Catalytic Activity for Soot Oxidation, Applied Catalysis A: General, 448 : 100–106 (2012).
[19] Gupta A., Waghmare U.V., Hegde M.S., Correlation of Oxygen Storage Capacity and Structural Distortion in from First Principles Calculation, Chem.Mater., 22: 5184–5198 (2010).
[20] Katta L., Sudarsanam P., Thrimurthulu G., Reddy B.M., Doped Nanosized Ceria Solid Solutions for Low Temperature Soot Oxidation: Zirconium Versus Lanthanum Promoters, Appl. Catal. B Environ., 101: 101–108 (2010).
[21] Shao W., Wang Z., Zhang X., Wang L., Promotion Effects of Cesium on Perovskite Oxides for Catalytic Soot Combustion, Catal. Letters, 146: 1397–1407 (2016).
[22] Liu L.Z., Li T.H., Wu X.L., Shen J.C., Chu P.K., Identification of Ooxygen Vacancy Types from Raman Spectra of SnO2 Nanocrystals, J. Raman Spectrosc., 43(10): 1423-1426 (2012).
[23] Piumetti M., Bensaid S., Russo N., Fino D., Investigations into Nanostructured Ceria-Zirconia Catalysts for Soot Combustion, Appl. Catal. B Environ., 180: 271–282 (2016).
[24] Fang C., Zhang D., Shi L., Gao R., Li H., Ye L., Zhang J., Highly Dispersed CeO2 on Carbon Nanotubes for Selective Catalytic Reduction of NO with NH3, Catalysis Science & Technology, 3: 803–811 (2013).
[25] Pawlak D.A., Ito M., Oku M., Shimamura K., Fukuda T., Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals, J. Phys. Chem. B., 106: 504–507(2002).
[26] Xin Z., Qiuhua Y., Jinjin C.U.I., XPS Study of Surface Absorbed Oxygen of ABO3 Mixed Oxides, Journal of Rare Earths, 26: 511–514 (2008).
[27] Huang H., Liu J., Sun P., Ye S., Liu B., Effects of Mn-Doped Ceria Oxygen-Storage Material on Oxidation Activity of Diesel Soot, RSC Adv., 7: 7406–7412 (2017).
[28] Lin F., Delmelle R., Vinodkumar T., Reddy B.M., Wokaun A., Alxneit I., Correlation between the Structural Characteristics, Oxygen Storage Capacities and Catalytic Activities of Dual-Phase Zn-Modified Ceria Nanocrystals, Catal. Sci. Technol,. 5: 3556–3567 (2015).
[29] Sunding M.F., Hadidi K., Diplas S., Løvvik O.M., Norby T.E., Gunnæs A.E., XPS Characterisation of in Situ Treated Lanthanum Oxide and Hydroxide Using Tailored Charge Referencing and Peak Fitting Procedures, J. Electron Spectros. Relat. Phenomena. 184: 399-400 (2011).
[30] Wu Q.-H., Liu M., Jaegermann W., X-Ray Photoelectron Spectroscopy of La0.5Sr0.5MnO3, Mater. Lett., 59: 1980–1983 (2005)
[31] Miotti L., Driemeier C., Tatsch F., Radtke C., Edon V., Hugon M.C., Voldoire O., Agius B., Baumvol I.J.R., Atomic Transport in LaAlO3 Films on Si Induced by Thermal Annealing, Electrochem. Solid-State Lett., 9:49–52 (2006).
[32] Koushik D., Verhees W., Kuang Y., Veenstra S., Zhang D., Verheijen M.A., Creatore M., Schropp R.E.I.E.I., High-Efficiency Humidity-Stable Planar Perovskite Solar Cells Based on Atomic Layer Architecture,Energy & Environmental Science, 0–31 (2016). doi:10.1039/C6EE02687G.
[33] Andana T., Piumetti M., Bensaid S., Russo N., Fino D., Pirone R., CO and Soot Oxidation over Ce-Zr-Pr Oxide Catalysts, Nanoscale Res. Lett., 11: 278 (2016). doi:10.1186/s11671-016-1494-6.
[34] Miceli P., Bensaid S., Russo N., Fino D., Effect of the Morphological and Surface Properties of CeO2-Based Catalysts on the Soot Oxidation Activity, Chem. Eng. J., 278:190–198 (2015).
[35] Imai H., Mechanistic Aspects of Oxidative Coupling of Methane, J. Chem. SOC., Faraday Trans. 1, 84: 923–929 (1988).
[36] Liu F., He H., Ding Y., Zhang C., Effect of  Manganese Substitution on the Structure and Activity of Iron Titanate Catalyst for the Selective Catalytic Reduction of NO with NH3, Applied Catalysis B. Environmental, 93: 194–204 (2009).
[37] Shangguan W.F., Teraoka Y., Kagawa S., Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-Type CuFe2O4 Catalyst, Applied Catalysis B. Environmental,12: 237–247 (1997).