Document Type : Research Article

**Authors**

Department of Mechanical Engineering, Faculty of Engineering, Lorestan University, Khoramabad, I.R. IRAN

**Abstract**

**Keywords**

**Main Subjects**

[1] Ozoe H., Okada K., The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure, *Int. J. Heat Mass Transfer*, **32**: 1939-1954 (1989).

[2] Garandet J.P., Alboussiere T., Moreau R., Buoyancy Driven Convection in a Rectangular Enclosure with a Transverse Magnetic Field, *Int. J. Heat Mass Transfer*, **35**: 741-748 (1992).

[3] Khanfar K., Vafai K., Lightstone M., Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, *Int. J. Heat Mass Transfer*, **46**: 3639-3953 (2003).

[4] Aminossadati M.A., Ghasemi B., Natural Convection Cooling of a Localized Heat Source at the Bottom of a Nanofluid-Filled Enclosure, *Eur. J. Mech. B/Fluids,* **28:** 630-640 (2009).

[5] Abu-Nada E., Oztop H.F., Effects of Inclination Angle on Natural Convection in Enclosures filled with Cu-Water Nanofluid, *Int. J. Heat Fluid Flow*, **30**: 669-678 (2009).

[6] Ghasemi B., Aminossadati S.M., Raisi A., Magnetic Field Effect on Natural Convection in a Nanofluid–Filled Square Enclosure, *Int. J. Therm. Sci.,*** 50**: 1748-1756 ( 2011).

[7] Pirmohammadi M., Ghassemi M., Effect of Magnetic Field on Convection Heat Transfer Inside a Tilted Square Enclosure, *Int. Commun. Heat Mass Transfer,* **36**: 776-780 (2009).

[8] Sheikhzadeh G.A., Arefmanesh A., Mahmoodi M., Numerical Study of Natural Convection in a Differentially-Heated Rectangular Cavity Filled with TiO_{2}-Water Nanofluid, *J. Nano Res.,* **13**: 75-80 (2011).

[9] Xu B., Li B.Q., Stock D.E., Nithyadevi N., An Experimental Study of Thermally Induced Convection of Molten Gallium in Magnetic Field, *J. Heat Mass Transfer,* **49**: 2009-2019 (2006).

[10] Hasanuzzaman M., Rahman Oztop H.F., Rahim M., Saidur N.R., Varol Y., Magnetohydrodynamic Natural Convection in Trapezoidal Cavities, *Int. Commun. Heat Mass Transf.*, **39**: 1384-1394 (2012).

[11] Kefayati Gh.R., Lattice Boltzmann Simulation of Natural Convection in Nanofluid-Filled 2D Long Enclosures at Presence of Magnetic Field, *Theor. Comput. Fluid Dyn.*, **27**(6): 865–883 (2013).

[12] Mejri I., Mahmoudi A., MHD Natural Convection in a Nanofluid-Filled Openenclosure with a Sinusoidal Boundary Condition, *Chem. Eng. Research Design*, **98**: 1–16 (2015).

[13] Selimefendigil F., Öztop H.F., Abu-Hamdeh N., Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field, *Entropy, ***18**: 43-53 (2016).

[14] Miroshnichenko I.V., Sheremet M.A., Oztop H.F., Al-Salem K., MHD Natural Convection in a Partially Open Trapezoidal Cavity Filled with a Nanofluid, *Int. J. Mech. Sci.*, **119:** 294–302 (2016).

[15] Sheremet M.A., Oztop H.F., Pop I., Al-Salem K., MHD Free Convection in a Wavy Open Porous Tall Cavity Filled with Nanofluids under an Effect of Corner Heater, *Int. J. Heat Mass Transfer,* **103:** 955–964 (2016).

[16] Mohebbi K., Rafee R., Talebi F., Effects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al_{2}O_{3}-Water Nanofluid inside Ribbed Tubes, *Iran. J. Chem. Chem. Eng. (IJCCE), ***34 **(3):61-77 (2015).

[17] Habibi M.R., Amini M., Arefmanesh A., Ghasemikafrudi E., Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al_{2}O_{3}-Water Nanofluid, *Iran. J. Chem. Chem. Eng. (IJCCE), *Articles in Press, Accepted Manuscript, Available Online from 07 February (2018).

[18] Sheikholeslami M., Gorji Bandpy M., Ellahi R., Mohsan H., Soheil S., Effects of MHD on Cu–Water Nanofluidflow and Heat Transfer by Means of CVFEM, *J. Magnetism Magnetic Materials,* **349**: 188-200 (2014).

[19] Maxwell, J. C., “A treatise on Electricity and Magnetism”, Oxford University Press, Cambridge, 2nd ed., 435-441 (1904).

[20] Brinkman, H. C., The Viscosity of Concentrated Suspensions and Solution, *J. Chem. Phys.*, **20**: 571–581 (1952).

September and October 2019

Pages 209-220