Modeling of Refractive Indices for Binary Aqueous Solutions of Some Alkane Polyols at Constant Temperature and Pressure

Document Type : Research Article


1 Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, VIETNAM

2 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, VIETNAM

3 Department of Chemistry, Faculty of Science, Islamic Azad University, Ayatollah Amoli Branch, Amol, I.R. IRAN

4 Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, SOUTH AFRICA


In this research, a theoretical study has been undertaken on the density and also on the relationship between refractive index and density for aqueous solutions. A simple linear equation is suggested to show this relationship. Also, a semi-empirical equation has been developed for estimating the constant of this linear equation. By using our suggested equations, the refractive indices of aqueous solutions of alkane polyols [R(OH)n, n = 2 to 6 -OH,s) and also polyols with one ring (monosaccharide) can be calculated. Moreover, the refractive indices of some alcohols and other components have been collected from the various literature. Our suggested equations have been tested for aqueous solutions of these molecules. For aqueous solutions of alkane polyols [R-(OH)n, n = 2 to 6 –OH,s) and monosaccharide, a good agreement is observed between experimental refractive indices and theoretical ones. Other molecules show positive and/or negative deviations from the results of our suggested equations. For various liquid solutions, the refractive indices can be correlated and fitted with our linear equation. Also, the value of the constant of this linear equation, Kref, shows the power of interaction between solute and solvent molecules. The interaction between solute and solvent molecules increases when the value of constant, Kref increases.


Main Subjects

[2] Koohyar F., Refractive Index and Its Applications. J. Thermodyn. Catal. 4:e117. doi:10.4172/2157-7544.1000e117 (2012).
[3] Dopazo G.A., González-Temes M., López D.L., Mejuto J.C., Density, Viscosity and Refractive Index Prediction of Binary and Ternary Mixtures Systems of Ionic Liquid. Mediterr. J. Chem., 3: 972-986 (2014).
[4] Galvãoa A.C., Robazza W.S., Rodriguesa D., Refratometric Study of Ternary Mixtures Formed by Water, Glucose and Acetonitrile at Temperatures Ranging from 293 K to 333 K. Phys. Chem. Liq., 54: 56-61 (2016).
[5] Carvalho P.J., Fonseca C.H.G., Moita M.L.C.J., Santos A.F.S., Coutinho J.A.P., Thermophysical Properties of Glycols and Glymes. J. Chem. Eng. Data., 60: 3721-3737 (2015).
[7] Shah R.Y., Agrawal Y.K., Introduction to Fiber Optics: Sensors for Biomedical Applications. Indian J. Pharm. Sci., 73: 17-22 (2011).
[8] Okullo J.B.L., Omujal F., Agea J.G., Vuzi P.C., Namutebi A., Okello J.B.A., Nyanzi S.A., Physico-chemical Characteristics of Shea Butter (Vitellariaparadoxa C.F. Gaertn.) Oil from the Sheadistrics of Uganda. Afr. J. Food, Agric., Nutr. Dev., 10: 2070-2084 (2010).
[9] Ibeto C.N., Okoye C.O.B., Ofoefule A.U., Comparative Study of the Physicochemical Characterization of Some Oils as Potential Feedstock for Biodiesel Production. ISRN Renewable Energy., Article ID 621518, 5 Pages, 2012. doi:10.5402/2012/621518 (2012).
[10] Ahluwalia G.S., “Cosmetics Applications of Laser and Light-based Systems. A Volume in Personal Care and Cosmetic Technology”, William Andrew (Elsevier). NY, United States (2009).
[11] Gholami A., Ansari H.R., Hosseini S.S., Prediction of Crude Oil Refractive Index Through Optimized Support Vector Regression: a Competition Between Optimization Techniques. J. Pet. Explor. Prod. Technol., 7: 195-204 (2017).
[12] Sun J.Z., Erickson M.C., Parr J.W., Refractive Index Matching and Clear Emulsions. J. Cosmet. Sci., 56: 253-265 (2005).
[15] Gomaa E.A., Tahoon M.A., Arafa A.T., Refractive Indices and Their Related Properties for Adipic Acid in Mixed Aqueous Methanol Solvents at Different Temperatures, AASCIT Communications., 3: 43-48 (2016).
[16] Wayne R., Deriving the Snel–Descartes Law for a Single Photon, Turk. J. Phys., 38: 26- 38 (2014).
[17] Saleh B.E.A., Teich M.C., “Fundamentals of Photonics”, John Wiley & Sons, Inc. Chapter 5 (1991).
[18] Padilla W.J., Basov D.N., Smith D.R., Negative Refractive Index Metamaterials, Materialstoday., 9: 28-35 (2006)
[19] Armghan A., Hu X., Yuan S., Xia J., Negative Refractive Index Metamaterial Structure Using SRR by Incidentingthe Light Horizontally. J. Electromagn. Anal. Appl., 7: 276-282 (2015).
[20] Tianqian L., Guangjun W., Yongjun H., Kang X., A Magnetotunable Negative Refractive Index Material, Int. J. Math., Phys. Eng. Sci., 6: 4031-4035 (2011).
[21] Veselago, V.G., The Electrodynamics of Substances with Simultaneously Negative Values of of ε and μ, Sov. Phys. Usp. 10: 509-514 (1968).
[22] Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., Extremely low frequency plasmonics in metallicmesostructures, Phys. Rev. Lett., 76: 4773-4776 (1996).
[23] Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett., 84: 4184-4187 (2000).
[24] Scalettar B.A., Swedlow J.R., Sedat J.W., Agard D.A., Dispersion, Aberration and Deconvolution in Multi-Wavelength Fluorescence Images, J. Micros., 182: 50-60 (1996).
[25] Pavia D.L., Kriz G.S., Lampman G.M., Engel R.G., “A Small Scale Approach to Organic Laboratory Techniques:, Fourth Edition, Cengage Learning, USA (2011).
[29] Bai K, Katz J. On the Refractive Index of Sodium Iodide Solutions for Index Matching in PIV. Exp. Fluids. 55: 1704: 6 pages (2014).
[30] Li J., Prestidge C.A., Addai-Mensah J., Viscosity, Density, and Refractive Index of Aqueous Sodium and Potassium Aluminate Solutions. J. Chem. Eng. Data., 45: 665-671 (2000).
[31] Chen J., Chen X., Xu R., Zhu Y., Shi Y., Zhu X., Refractive Index of Aqueous Solution of CdTe Quantum Dots. Opt. Commun., 281: 3578-3580 (2008).
[32] Koralewski M., Bodek K.H., Marczewska K., “Optical Properties of Chitosan in Aqueous Solution”, Polish Chitin Society, Monograph XI 29-39 (2006).
[33] Proutiere A., Megnassan E., Hucteau H., Refractive Index and Density Variations in Pure Liquids: A New Theoretical Relation, J. Phys. Chem., 96: 3485-3489 (1992).
[34] Gharagheizi F., Ilani-Kashkouli P., Kamari A., Mohammadi A.H., Ramjugernath D., Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds, J. Chem. Eng. Data., 59: 1930-1943 (2014).
[35] Gladstone J.H., Dale T.P., Researches on The Refraction, Dispersion and Sensitiveness of Liquids, Phil. Trans. 153: 317-343 (1863).
[36] Han s., Du C.B., Jian X., Meng L., Ren-Jie X., Jian W., Zhao H.K., Density, Viscosity, and Refractive Index of Aqueous Solutions of Sodium Lactobionate. J. Chem. Eng. Data., 61, 731-739 (2016).
[38] Lide D.R., “CRC Handbook of Chemistry and Physics”, 84th Edition, CRC Press, USA (2003-2004).
[39] Deosarkar, S.D., Deoraye S.M., Kalyankar T.M., Temperature and Concentration Dependences of Density and Refraction of Aqueous Duloxetine Solutions, Russ. J. Phys. Chem. A., 88: 1129-1132 (2014).
[40] Deosarkar, S.D.,  Wanale S.G., Shelke M.P., Apparent Molar and Partial Molar Volumes of Aqueous Ceric Ammonium Nitrate Solutions at 20, 25, 30, and 35°C, Russ. J. Phys. Chem. A., 88: 1124-1128 (2014).
[41] Deosarkar S.D., Sawale R.T. Tawde P.D., Kalyankar T.M., Solution Behavior of Metoclopramide in Aqueous-Alcoholic Solutions at 30°C, Russ. J. Phys. Chem. A., 90: 1362-1366 (2016)
[42] Deosarkar S.D., Pawar M.P., Arsule A.D., Sawale R.T., Kalyankar T.M., Volumetric and Optical Properties of ACE Inhibitor Captopril Drug in Aqueous-Alcoholic Mixtures, J. Taibah. Univ. Sci., 11: 815-821 (2017).
[43] Deosarkar S.D., Birajdar S.S., Sawale R.T., Pawar M.P., Thakre A.M., Density and Optical Properties of {Ciprofloxacin Hydrochloride + Aqueous-Ethanol} Mixtures at 30 °C, J. Thermodyn., vol. 2016, Article ID 1575836, 4 pages, 2016.
[45] Gubskaya A.V., Kusalik P.G., The Total Molecular Dipole Moment for Liquid Water. J. Chem. Phys., 117:5290-5302 (2002).
[46] Rizk H.A., Elanwar M., Dipole Moments of Glycerol, Isopropyl Alcohol, and Isobutyl Alcohol, Can. J. Chem., 46: 407-513 (1968).
[47] Chang, R. "Chapter 13: Intermolecular Forces/ Ion-Induced Dipole and Dipole-Induced Dipole Interactions/ Dispersion, or London, Interactions", Physical Chemistry for the Biosciences. Sansalito, CA: University Science, 495-498. Print. (2005).