The Removal of Cadmium, Cobalt, and Nickel by Adsorption with Na-Y Zeolite

Document Type : Research Article

Authors

1 Material Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, TUNISIA

2 Faculty of Sciences of Gafsa, University of Gafsa, TUNISIA

3 Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, TUNISIA

Abstract

The article aims to study the removal of heavy metal ions Cd2+, Co2+, and Ni2+ from an aqueous solution using faujasite NaY. The adsorption studies were carried out in the single and binary component system. Sorption experiments were performed in batch at pH (5–6), adsorbent dosage (0.15 g), and initial concentration (0.1–10 mmol/L). The single-ion equilibrium adsorption data were fitted to three isotherm models: Langmuir, Freundlich, and Dubinin-Radushkevich. Results showed that the Langmuir isotherm fits sorption data better than the Freundlich equation. The maximum adsorption capacities (Qmax) were 0.81, 0.85 and 0.92 mmol/g for Cd2+, Ni2+ and Co2+ ions, respectively. Besides, the study of the competitive sorption of ions in a binary system showed that faujasite NaY preferentially adsorbs cations in the following order: Co2+>Ni2+>Cd2+. The obtained RL (separation factor or Langmuir parameter) values were in the range of 0–1 indicating that Cd2+, Co2+, and Ni2+ sorption were favorable. The obtained mean free energy value for adsorption of Co2+ and Ni2+‏were in the range of 8–16 kJ/mol, indicating that ions were uptaken through an ion exchange process.

Keywords

Main Subjects


[1] Kim S.A., Kamala-Kannan S., Lee K.J., Park Y.J., Shea P.J., Lee W.H., Kim H.M., Oha B.T., Removal of Pb(II) from Aqueous Solution by a Zeolite–Nanoscale Zero-Valent iron CompositeChem. Eng. J., 217:
54–60 (2013).
[3] Akpor O.B., Muchie M., Environmental and Public Health Implications of Wastewater Quality, Afr. J. Biotechnol., 10: 2379–2387 (2011).
[5] Keng P.S., Lee S.L., Ha S.T.,  Hung Y.T., Ong S.T., Removal of Hazardous Heavy Metals from Aqueous Environment by Low-Cost Adsorption Materials, Env. Chem. Lett., 12: 15–25 (2014).
[7] Beaulieu P., Fisset B., Eau du Robinet: Une Exigence de Qualité…TapWater: A Requirement of Quality, Cahiers de Nutrition et de Diététique, 44: 294–301 (2009).
[8] Clouzot N., Marrot B., Effect of Membrane Bioreactor Configurations on Sludge Structure and Microbial Activity, Bioresour. Technol., 102: 975–981 (2011).
[9] Liakos T.I., Lazaridis N.K., Melanoidins Removal From Simulated and Real Wastewaters by Coagulation and Electro-Flotation, Chem. Eng. J., 242: 269–277 (2014).
[10] Davila J.A., Machuca F., Marrianga N., Treatment of Vinasses by Electrocoagulation–Electroflotation Using the Taguchi Method, Electrochim. Acta., 56: 7433–7436 (2011).
[11] Araissi M., Ayed I., Elaloui E., Moussaoui Y., Removal of Barium and Strontium from Aqueous Solution Using Zeolite 4A, Water. Sci. Technol., 73: 1628–1636 (2016).
[12] Pavel C.C., Popa K., Investigations on the Ion Exchange Process of Cs+ and Sr2+ Cations by ETS Materials, Chem. Eng. J., 245: 288–294 (2014).
[13] Largitte L., Gervelas S., Tant T., Couespel-Dumesnil P., Hightower A., Yasami R., Bercion Y., Lodewyckx P., Removal of Lead from Aqueous Solutions by Adsorption with Surface Precipitation, Adsorption, 20: 689–700 (2014).
[14] Wong C.W., Barford J.P., Chen G., McKay G., Kinetics and Equilibrium Studies for the Removal of Cadmium Ions by Ion Exchange Resin, J. Env. Chem. Eng., 2: 698–707 (2014).
[15] Lee C.G., Park J.A., Choi, J.W. Ko S.O., Lee S.H., Removal and Recovery of Cr(VI) from Industrial Plating Wastewater Using Fibrous Anion Exchanger, Water Air Soil Pollut., 227: 287 (2016).
[17] Usman A., Sallam A., Zhang M., Vithanage M., Ahmad M., Al-Farraj A., Sik Ok Y., Abduljabbar A., Al-Wabel M., Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency and Mechanisms, Water Air Soil Pollut., 227: 449 (2016).
[18] Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M., Adsorption of Zn2+ Ions onto NaA and NaX Zeolites: Kinetic, Equilibrium and Thermodynamic Studies, J. Hazard. Mater., 173: 637–646 (2010).
[19] Montegut G., Michelin L., Brendle J., Lebeau B., Patarin J., Ammonium and Potassium Removal from Swine Liquid Manure Using Clinoptilolite, Chabazite and Faujasite Zeolites, J. Env. Manag., 167: 147–155 (2016).
[20] Wilfried L., Jean-Louis P., Florence P., Elsa P., Thomas O., Pascale M., Anne B., Benjamin R., Cation Migration and Structural Deformations upon Dehydration of Nickel-Exchanged NaY Zeolite:
A Combined Neutron Diffraction and Monte Carlo Study
, J. Phys. Chem. C, 120: 18115–18125 (2016).
[21] Nascimento M., Soares P.S.M., Souza V.P., Adsorption of Heavy Metal Cations Using Coal Fly Ash Modified by Hydrothermal Method, Fuel, 88: 1714–1719 (2009).
[22] Erdem E., Karapinar N., Donat R., The Removal of Heavy Metal Cations by Natural Zeolites, J. Colloid Interf. Sci., 280: 309–314 (2004).
[23] Wang C., Li J., Sun X., Wang L., Evaluation of Zeolites Synthesized From Fly Ash as Potential Adsorbents for Wastewater Containing Heavy Metals,J. Environ. Sci., 21: 127–136 (2009).
[24] Franus M., Wdowin M., Bandura L., Franus W., Removal of Environmental Pollutions Using Zeolites from Fly Ash: AReview, Fresenius Environ. Bull. 24: 854–866 (2015).
[25] Shibata W., Seff K., Pb2+Exchange Isotherms for Zeolite Na-X at pH 5, 6, and 7, Zeolites, 19:87–89 (1997).
[26] Pandeya P.K., Sharmab S.K., Sambib S.S., Removal of lead(II) from Waste Water on Zeolite-NaX
J. Environ. Chem. Eng. 3: 2604–2610 (2015).
[27] Shakur H.R., Saraee Kh.R.E., Abdi M.R., Azimi G., A Novel PAN/NaX/ZnONanocomposite Absorbent: Synthesis, Characterization, Removal of Uranium Anionic Species from Contaminated Water,
J. Mater. Sci., 51: 9991–10004 (2016).
[28] Barros M.A.S.D., Silva E.A., Arroyo P.A., Tavares C.R.G., Schneider R.M., Suszek M., Sousa-Aguiar E.F., Removal of Cr(III) in the Fixed Bed Column and Batch Reactors Using as Adsorbent Zeolite NaX, Chem. Eng. Sci., 59: 5959–5966 (2004).
[29] Duke M., O’Brien-Abraham J., Milne N., Zhu B., Lin Y.S., Diniz da Costa J.C., Seawater Desalination Performance of MFI Type Membranes Made by Secondary Growth, Sep. Purif. Technol., 68: 343–350 (2009).
[31] Zhu B., Hong Z., Milne N., Doherty C.M., Zou L., Lin Y.S., Hill A.J., Gu X., Duke M., Desalination of Seawater Ion Complexes by MFI-Type Zeolite Membranes: Temperature and Long Term Stability, J. Member. Sci., 453: 126–135 (2014).
[32] Kazemimoghadam M., Mohammadi T., Synthesis of MFI Zeolite Membranes for Water Desalination, Desalination, 206: 547–553 (2007).
[33] Kumar R.V., Pugazhenthi G., Removal of Chromium From Synthetic Wastewater Using MFI Zeolite Membrane Supported on Inexpensive Tubular Ceramic Substrate, J. Water Reuse and Desalination, 7: 365–377(2017).
[34] Oliveira L.C.A., Petkowicz D.I., Smaniotto A., Pergher S.B.C., Magnetic Zeolites: A New Adsorbent for Removal of Metallic Contaminants from Water, Water Res., 38: 3699–3704 (2004).
[35] Tavares M.T., Quintelas C., Figueiredo H., Neves I., Comparative Study between Natural and Artificial Zeolites as Supports for Biosorption Systems, Mater. Sci. Forum., 514-516: 1294–1298 (2006).
[36] Mekatel H., Amokrane S., Benturki A., Nibou D., Treatment of Polluted Aqueous Solutions by Ni2+, Pb2+, Zn2+, Cr6+,Cd2+ and Co2+Ions by Ion Exchange Process Using Faujasite Zeolite, Procedia Eng., 33: 52–57 (2012).
[37] Efome J.E., Rana D., Matsuura T., Lan C.Q., Metal-Organic Frameworks Supported on Nanofibers to Remove Heavy Metals, J. Mater. Chem. A, 6: 4550–4555 (2018)
[38] Quintelas C., Rocha Z., Silva B., Fonseca B., Figueiredo H., Tavares T., Biosorptive Performance of an Escherichia Coli Biofilm Supported on Zeolite Nay for the Removal Of Cr(VI), Cd(II), Fe(III) and Ni(II), Chem. Eng. J.,152: 110–115 (2009).
[39] Wong-Ng W., Kaduk J.A., Huang Q., Espinal L., Li L., Burress J.W., Investigation of Nay Zeolite with Adsorbed CO2 by Neutron Powder Diffraction, Microporous Mesoporous Mater. 172: 95–104 (2013).
[40] Soares O.S.G.P., Marques L., Freitas C.M.A.S., Fonseca A.M., Parpot P., Orfao J.J.M., Pereira M.F.R., Neves I.C., Mono and Bimetallic Nay Catalysts with High Performance in Nitrate Reduction in Water, Chem. Eng. J., 281: 411–417 (2015).
[42] Marchat D., Bernache-Assollant D., Champion E., Cadmium Fixation by Synthetic Hydroxyapatite in Aqueous Solution—Thermal Behavior, J. Hazard. Mater.,139 453–460 (2007).
[43] Psareva T.S., Zakutevskyy O.I., Chubar N.I., Strelko V.V., Shaposhnikova T.O., Carvalho J.R., Correia M.J.N., Uranium Sorption on Cork Biomass, Colloids Surf. A, 252: 231–236 (2005).
[44] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids, J. Am. Chem. Soc., 38: 2221–2295 (1916).
[45] Saad M.K., Khiari R., Elaloui E., Moussaoui Y., Adsorption of Anthracene Using Activated Carbon andPosidoniaOceanic, Arab. J. Chem., 7: 109–113 (2014).
[46] Taleb F., Ben Mosbah M., Elaloui E., Moussaoui Y., Adsorption of Ibuprofen Sodium Salt Onto Amberlite Resin IRN-78: Kinetics, Isotherm and Thermodynamic Investigations, Korean J. Chem. Eng., 34: 1141–1148 (2017).
[47] Weber T.W., Chakkravorti R.K., Pore And Solid Diffusion Models for Fixed‐Bed Adsorbers, Aiche. J. 20: 228–234 (1974).
[48] Freundlich H., ÜberDie Adsorption in Lösungen, Z. Phys. Chem. 57: 385–470 (1907).
[50] Sadeghalvad B., Torabzadehkashi M., Azadmehr A.R., A Comparative Study of Cu (II) And Pb(II) Adsorption by Iranian Bentonite (BirjandArea) in Aqueous Solutions, Adv. Environ. Technol. 1: 93–100 (2015).
[52] Ademiluyi F.T., Chinyere N.J., Sorption Characteristics for Multiple Adsorption of Heavy Metal Ions Using Activated Carbon from Nigerian Bamboo, J. Mat. Sci. Chem. Eng., 4 39–48 (2016).
[53] Giles C.H., Macewan T.H., Nakhwa S.H., Smith D., Studies in Adsorption, J. Chem. Soc., 0: 3973–3993 (1960).
[54] Hui K.S., Chao C.Y.H., Kot S.C., Removal of Mixed Heavy Metal Ions in Wastewater by Zeolite 4A
and Residual Products from Recycled Coal Fly Ash
, J. Hazard. Mater. B., 127: 89–101 (2005).
[55] El-Mekkawi D.M., Selim M.M., Removal of Pb2+ from Water by Using Na-Y Zeolites Prepared from Egyptian Kaolins Collected from Different Sources, J. Environ. Chem. Eng., 2: 723–730 (2014).
[57] Srivastava V.C., Mall I.D., Mishra I.M., Modelling Individual and Competitive Adsorption of Cadmium(II) and Zinc(II) Metal Ions from Aqueous Solution onto Bagasse Fly Ash, Sep. Sci. Technol., 41: 2685–2710 (2006).