Synthesis and Characterization of γ-Fe2O3@HAp@β-CD Core-Shell Nanoparticles as a Novel Magnetic Nanoreactor and Its Application in the One-Pot Preparation of β-azido Alcohols, β-nitro Alcohols, and β-cyanohydrins

Document Type : Research Article


1 Chemistry Department, College of Science, Shahid Chamran University, Ahvaz 61357-4-3169, I.R. IRAN

2 ACECR-Production Technology Research Institute, Ahvaz, I.R. IRAN


In this study, β-cyclodextrin(β-CD) supported, hydroxyapatite encapsulated γ-Fe2O3 (γ-Fe2O3@HAp@β-CD) was successfully prepared and evaluated as a solid-liquid phase transfer catalyst and also a molecular host system and nanoreactor for the nucleophilic ring-opening of epoxides in water for the preparation of β-azido alcohols, β-nitro alcohols, and β-cyanohydrins. The catalyst was characterized by FT-IR, XRD, TGA, and SEM. This procedure offers several advantages including excellent regioselectivity, high yields, short reaction times, recyclable catalyst, easy separation of the catalyst through external magnet, and easy work-up.


Main Subjects

[2] Poursaberi T., Akbar V., Shoja S.M.R., Application of Rh(III)-Metalloporphyrin Grafted Fe3O4 Nanoparticles for the Extraction of Thiocyanate Ions from Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 34: 41-49 (2015).
[3] Laurent S., Forge D., Port M., Roch A., Robic C., Elst L.V., Muller, R.N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications,Chem. Rev., 108: 2064–2110 (2008).
[5] Rostamizadeh S., Azad M., Shadjou N., Hasanzadeh M., (α-Fe2O3)-MCM-41-SO3H as a Novel Magnetic Nanocatalyst for the Synthesis of N-aryl-2-amino-1,6-naphthyridine Derivatives, Catal. Commun.,
25: 83-91(2012).
[6] a) Hudson R., Riviere A., Cirtiu C. M., Luska K. L., Moores A., Iron-Iron Oxide Core-Shell Nanoparticles are Active and Magnetically Recyclable Olefin and Alkyne Hydrogenation Catalysts in Protic and Aqueous Media, Chem. Commun., 48: 3360–3362 (2012).
     b) Zatloukalová K., Obalová L., Kočí K., Čapek L., Matěj Z., Šnajdhaufová H., Ryczkowski J., Słowik G., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 29-38 (2017)
[8] Zhao X.S., Bao X.Y., Guo W., Lee F.Y., Immobilizing Catalysts on Porous Materials, Mater. Today, 9: 32-39 (2006).
[9] Pankhurst Q. A., Connolly J. S., Jones K., Dobson J., Applications of Magnetic Nanoparticles in Biomedicine, J. Phys. D: Appl. Phys., 36: 32-39 (2003).
[10] Ma’mani L., Sheykhan M., Heydari A., Faraji M., Yamini, Y., Sulfonic Acid Supported on Hydroxyapatite-Encapsulated-γ-Fe2O3 Nanocrystallites as a Magnetically Brønsted Acid for N-formylation of AminesAppl. Catal. A: Gen., 377: 64–69 (2010).
[11] Teunissen W., Bol A.A., Geus J.W., Magnetic Catalyst Bodies, Catal. Today, 48: 329–336 (1999).
[12] Yoon T.J., Lee W., Oh Y.S., Lee J.K., Magnetic Nanoparticles as a Catalyst Vehicle for Simple and Easy Recycling, New J. Chem., 27: 227–229 (2003).
[13] Yoon H., Ko S., Jang J., Nitrogen-Doped Magnetic Carbon Nanoparticles as Catalyst Supports for Efficient Recovery and Recycling, Chem. Commun., 0: 1468–1470 (2007) 
[14] Srinivas B., Pavan Kumar V., Sridhar R., Surendra K., Nageswar Y.V.D., Rama Rao K., Regioselective Nucleophilic Opening of Epoxides and Aziridines under Neutral Conditions in the Presence of β-cyclodextrin in Water, J. Mol. Catal. A: Chem., 261: 1-5 (2007).
[16] Dell Valle E.M.M., Cyclodextrins and Their Uses: A Review, Process. Biochem., 39: 1033-1046 (2004).
[17] Szejtli J., Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev., 98: 1743-1754 (1998).
[19] Fuhrer R., Herrmann I.K., Athanassiou E.K., Grass R.N., Stark W. J., Immobilized β-cyclodextrin on Surface-Modified Carbon-Coated Cobalt Nanomagnets: Reversible Organic Contaminant Adsorption and Enrichment from WaterLangmuir, 27, 1924-1929(2011).
[25] Saito S., Yamashita S., Nishikawa T., Yokoyama Y., Inaba M., Moriwake, T., Highly Nucleophilic Tributyltin Azide in Oxirane Ring Cleavage Leading to 1, 2-Azido Alcohol, Tetrahedron lett., 30(31): 4153-4156 (1989).