Boric Acid Supported on Montmorillonites as Catalysts for Synthesis of 2,3-dihydroquinazolin-4(1H)-ones

Document Type : Research Article


1 Department of Chemistry, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai-600 062, INDIA

2 Department of Chemistry, College of Engineering Studies, University of Petroleum & Energy Studies (UPES), Bidholi Campus, Dehradun-248 007, INDIA

3 Department of Chemistry, Shinas College of Technology, Shinas, OMAN


Synthesis of 2,3-dihydroquinazolin-4(1H)-ones using H3BO3/montmorillonite K10 (H3BO3/mont K10) catalyst has been reported. H3BO3/mont K10 and H3BO3/mont K30 have been prepared and used as catalysts in the reaction between anthranilamide and benzaldehyde to prepare 2-phenyl-2,3-dihydroquinazolin-4(1H)-one. The catalysts have been characterized for their physico-chemical properties by XRD, IR, BET surface analysis, TGA, SEM, and DRIFTS. H3BO3/mont K10 has shown better catalytic activity among the catalysts tested for the synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one. The reaction conditions have been optimized for 2-phenyl-2,3-dihydroquinazolin-4(1H)-one and the reusability of H3BO3/mont K10 has also been investigated. Several 2,3-dihydroquinazolin-4(1H)-one derivatives have been synthesized in good to excellent yields using the optimized reaction conditions.


Main Subjects

[1] Nagendrappa G., Organic Synthesis Using Clay and Clay-Supported Catalysts, Appl. Clay Sci., 53: 106-138 (2010).
[2] Alaimo R.J., Russell H.E., Antibacterial 2,3-dihydro-2-(5-nitro-2-thieny1)- quinazolin-4( 1H)-onesJ. Med. Chem., 15: 335-336 (1972).
[3] Parish H.A., Gilliom R.D., Purcell W.P., Browne R.K., Spirk R.F., White H.D., Syntheses and Diuretic Activity of 1,2-dihydro-2-(3-pyridyl)-3H-pyrido[2,3-d]pyrimidin-4-one and Related Compounds, J. Med. Chem., 25: 98-102 (1982).
[4] Sadanandam Y.S., Reddy K.R.M., Rao A.B., Synthesis of Substituted 2,3-dihydro-1 -(p-phenylethyl)-2-aryl and 2,3-diaryl-4( 1 H)-quinazolinones and Their Pharmacological Activities, Eur. J. Med. Chem., 22 (2): 169–173 (1987).
[5] Hamel E., Lin C.M., Plowman J., Wang H.K., Lee K.H., Paull K.D., Antitumor 2,3-dihydro-2-( aryl)-4( H-I)-quinazolinone Derivatives, Biochem. Pharmacol., 51: 53-59 (1996). 
[6] Na Y.H., Hong S.H., Lee J.H., Park W.K., Baek D.J., Koh H.Y., Cho Y.S., Choo H., Pae A.N., Novel Quinazolinone Derivatives as 5-HT7 Receptor Ligands, Bioorg. Med. Chem., 16: 2570-2578 (2008).
[8] Hour M.J., Huang L.J., Kuo S.C., Xia Y., Bastow K., Nakanishi Y., Hamel E., Lee K.H., 6-Alkylamino- and 2,3-Dihydro-3′-methoxy-2-phenyl-4-quinazolinones and Related Compounds: Their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization, J. Med. Chem., 43: 4479-4487 (2000).
[9] Cai G.P., Xu X.L., Li Z.F., William P., Weber P., Lu J., A One-pot Synthesis of 2-aryl-2,3-dihydro-4(1H)-Quinazolinones by Use of Samarium Iodide, J. Heterocycl. Chem., 39: 1271-1272 (2002).
[10] Shi D., Rong L., Wang J., Zhuang Q., Wang X., Hu H., Synthesis of Quinazolin-4(3H)-ones and  1,2-Dihydroquinazolin- 4(3H)-ones with The Aid of a Low-Valent Titanium Reagent, Tetrahedron Lett., 44: 3199-3201 (2003).
[11] Abdel-Jalil R.J., Voelter W., Saeed M., A Novel Method for the Synthesis of 4(3H)-Quinazolinones, Tetrahedron Lett., 45: 3475-3476 (2004).
[12] Dabiri M., Salehi P., Otokesh S., Baghbanzadeh M., Kozehgary G., Mohammadi A.A., Efficient Synthesis of Mono- and Disubstituted 2,3-Dihydroquinazolin-4(1H)-ones Using KAl(SO4)2·12H2O as a Reusable Catalyst in Water and Ethanol, Tetrahedron Lett., 46: 6123–6126 (2005).
[13] Yoo C.L., Fettinger J.C., Kurth M.J., Stannous Chloride in Alcohol: A One-Pot Conversion of 2-Nitro-N-Arylbenzamides to 2,3-Dihydro-1H-Quinazoline-4-ones, J. Org. Chem., 70: 6941-6943 (2005).
[14] Salehi P., Dabiri M., Baghbanzadeh M., Bahramnejad M., One-Pot, Three-Component Synthesis of 2,3-Dihydro-4(1H)-Quinazolinones by Montmorillonite K-10 as An Efficient and Reusable Catalyst, Synth. Commun., 36: 2287-2292 (2006).
[15] Surpur M.P., Singh P.R., Patil S.B., Samant S.D., Expeditious One-Pot and Solvent-Free Synthesis of Dihydroquinazolin-4(1H)-ones in the Presence of Microwaves, Synth. Commun., 37: 1965-1970 (2007).
[17] Rostamizadeh S., Amani A.M., Aryan R., Ghaieni H.R., Shadjou N., Synthesis of New 2-Aryl Substituted 2,3-Dihydroquinazoline-4(1H)-ones under Solvent-Free Conditions using Molecular Iodine as a Mild and Efficient Catalyst, Synth. Commun., 38: 3567-3576 (2008).
[18] Shaabani A., Maleki A.A., Mofakham H., Click Reaction: Highly Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones, Synth. Commun., 38: 3751-3759 (2008).
[19] Chen J., Wu D., He F., Liu M., Wu H., Ding J., Su W., Gallium(III) Triflate-Catalyzed One-Pot Selective Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones and Quinazolin-4(3H)-ones, Tetrahedron Lett., 49: 3814–3818 (2008).
[20] Dabiri M., Salehi P., Baghbanzadeh M., Zolfigol M.A., Agheb M., Heydari S., Silica Sulfuric Acid: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones in Water and under Solvent-Free Conditions, Catal. Commun., 9: 785-788 (2008).
[21] Chinigo G.M., Paige M., Grindrod S., Hamel E., Dakshanamurthy S., Chruszcz M., Minor W., Milton L., Brown M.L., Asymmetric Synthesis of 2,3-Dihydro-2-Arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity, J. Med. Chem., 51: 4620-4631 (2008).
[22] Darvatkar N.B., Bhilare S.V., Deorukhkar A.R., Raut D.G., Salunkhe M.M., [bmim]HSO4: An Efficient and Reusable Catalyst for One-Pot Three-Component Synthesis of 2,3-Dihydro-4(1H)-Quinazolinones, Green Chem. Lett. Rev., 3: 301-306 (2010).
[23] Tang J.H., Shi D.X., Zhang L.J., Hzang Q., Li J.R, Facile and one-pot synthesis of 1,2-Dihydroquinazolin-4(3H)-ones via Tandem Intramolecular Pinner/Dimroth Rearrangement, Synth. Commun., 40: 632-641 (2010).
[24] Subba Reddy B.V., Venkateswarlu A., Madan Ch., Vinu A., Cellulose-SO3H: An Efficient and Biodegradable Solid Acid for the Synthesis of Quinazolin-4(1H)-ones, Tetrahedron Lett., 52: 1891-1894 (2011).
[26] Chen Y., Shan W., Lei M., Hu L., Thiamine Hydrochloride (VB1) as an Efficient Promoter for the One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones, Tetrahedron Lett., 53: 5923–5925 (2012).
[27] Sharma M., Pandey S., Chauhan K., Sharma D., Kumar B., Chauhan PM., Cyanuric Chloride Catalyzed Mild Protocol for Synthesis of Biologically Active Dihydro/Spiro Quinazolinones and Quinazolinone-Glycoconjugates, J. Org. Chem., 77: 929-937 (2012).
[28] Ramesh K., Karnakar K., Satish G., Anil Kumar B.S.P., Nageswar Y.V.D., A Concise Aqueous Phase Supramolecular Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-one derivatives, Tetrahedron Lett., 53(51): 6936-6939 (2012).
[29] Vilas B.L., Pravin V.S., Murlidhar S.S., A Facile and Rapid Access Towards the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones, Tetrahedron Lett., 54(43): 5778-5780 (2013).
[30] Yerram P., Chowrasia R., Seeka S., Tangenda S.J., Polyethylene Glycol (PEG-400) as a Medium for Novel and Efficient Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-one derivatives, Eur. J. Chem., 4: 462-466 (2013).
[31] Ramamohan M., Raghunadh A., Raghavendra Rao K., Chandrasekhar K.B., Sridhar R., Jayaprakash S., An Efficient Synthesis of 2-Substituted Quinazolin-4(3H)-ones Catalyzed by Iron(III) Chloride, Synlett, 25(6): 821-826 (2014). 
[32] Wu X.F., Oschatz S., Block A., Spannenberg A., Langer P., Base Mediated Synthesis of 2-Aryl-2,3-Dihydroquinazolin-4(1H)-ones from 2-Aminobenzonitriles and Aromatic Aldehydes in Water, Org. Biomol. Chem., 12: 1865-1870 (2014). 
[34] Tarannum S., Ahmed N., Siddiqui Z.N., LaCl3/nano-SiO2: A Novel Nanocatalyst for Efficient Synthesis of Functionalized 2,3-Dihydroquinazolinones, Catal. Commun., 66: 60-66 (2015).
[35] Ying-Hui S., Li-Yan F., Xiang-Xiong L., Meng-Xia L., Y(OTf)3-Catalyzed Heterocyclic Formation via Aerobic Oxygenation: An Approach to Dihydro Quinazolinones and Quinazolinones, Chin. Chem. Lett., 26 (11): 1355-1358 (2015).
[36] Rahman M., Ling I., Abdullah N., Hashim R., Hajra A., Organocatalysis by p-Sulfonic Acid Calix[4]arene: a Convenient and Efficient Route to 2,3-Dihydroquinazolin-4(1H)-ones in Water, RSC Adv., 5: 7755–7760 (2015).
[40] Zhaleh S., Hazeri N., Maghsoodlou M.T., Green Protocol for Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones: Lactic Acid as Catalyst under Solvent-Free Condition. Res. Chem. Intermed, 42: 6381-6390 (2016).
[44] Zhang S., Xie Z., Liu L., Liang M., Le Z., Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by α-Chymotrypsin, Chin. Chem. Lett., 28: 101–104 (2017).
[47] Vijayakumar B., Nagendrappa G., Jai Prakash B.S., Acid Activated Indian Bentonite, An Efficient Catalyst for Esterification of Carboxylic Acids, Catal. Lett., 128: 183-189 (2009).
[48] Medvedev E.F., Komarevskaya A.S., IR Spectroscopic Study of The Phase Composition of Boric acid as a Component of Glass Batch, Glass Ceram., 64(1–2): 42-46 (2007).
[49] Sadek O.M., Mekhamer W.K., Ca-Montmorillonite Clay as Thermal Energy Storage Material, Thermochim. Acta, 363: 47-54 (2000).
[50] Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to The Determination of Surface Area and Porosity (Recommendations 1984), Pure & Appl. Chem., 57: 603-619 (1985).
[51] Fatih S., Fatih D., Murat B., Hüseyin O., Kinetic Analysis of Thermal Decomposition of Boric acid from Thermogravimetric Data, Korean J. Chem. Engg., 23(5): 736-740 (2006).
[52] Vijayakumar B., Ranga Rao G., PWA/montmorillonite K10 Catalyst for Synthesis of Coumarins under Solvent-free Conditions, J. Porous. Mater., 19: 233-242 (2012).
[53] Reddy C.R., Bhat Y.S., Nagendrappa G., Jai Prakash B.S., Brønsted and Lewis Acidity of Modified Montmorillonite Clay Catalysts Determined by FT-IR Spectroscopy, Catal. Today, 141: 157-160 (2009).
[54] Wang M., Zhang T.T., Song Z.G., Eco-Friendly Synthesis of 2-Substituted-2,3-dihydro-4(1H)-Quinazolinones in Water, Chin. Chem. Lett., 22: 427-430 (2011).