Fischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex

Document Type : Research Article


Department of Chemistry, University of Sistan and Baluchestan, P. O. Box 98135-674, Zahedan, I.R. IRAN


The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by their calcination underwent powder x-ray diffraction, thermal gravimetric analysis, specific surface area measurement using the Brunauer-Emmett-Teller method, scanning electron microscopy, and Fourier Transform InfraRed (FT-IR) spectroscopy. The catalytic performance of all calcined catalysts used in Fischer-Tropsch synthesis was investigated at 280 to 360 °C. The Cu-Co/SiO2 catalyst was prepared by thermal decomposition of [Cu(H2O)6][Co(dipic)2].2H2O/SiO2, which served as an optimal precursor for synthesis gas conversion into light olefins. The results highlight the advantages of this novel procedure over impregnation and co-precipitation approaches for effective and durable preparation of cobalt catalysts for Fischer-Tropsch synthesis.


Main Subjects

[1] Trépanier M., Tavasoli A., Anahid S., K. Dalai A., Deactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 37-47 (2011).
[2] Mirzaei A.A., Shahriari S., Arsalanfar M., Effect of Preparation Conditions on the Catalytic Performance of Co/Ni Catalysts for CO Hydrogenation, J. Nat. Gas. Sci. Eng., 3(4): 537–546 (2011).
[3] Feyzi M., Mirzaei A.A., Preparation and Characterization of CoMn/TiO2 Catalysts for Production of Light Olefins, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 17-28 (2011).
[4] Zare A., Zare A., Shiva M., Mirzaei A.A., Effect of Calcination and Reaction Conditions on the Catalytic Performance of Co–Ni/Al2O3 Catalyst for CO Hydrogenation, J. Ind. Eng. Chem., 19(6): 1858–1868 (2013).
[5] Tavasoli A., Karimi A., Khodadadi A.A., Mortazavi Y., Mousavian M.A., Accelerated Deactivation and Activity Recovery Studies of Ruthenium and Rhenium Promoted Cobalt Catalysts in Fischer-Tropsch Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 24(4): 25-36 (2005).
[6] Tavasoli A., Anahid S., Nakhaeipour A., Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Iron Nano Catalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3): 1-12 (2010).
[7] Tavasoli A., Sadaghiani K., Nakhaeipour A., Ahangari M., Cobalt Loading Effects on the Structure and Activity for Fischer-Tropsch and Water-Gas Shift Reactions of Co/Al2O3 Catalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 26(1): 9-16 (2007).
[8] De La Osa A.R., De Lucas A., Romero A., Valverde J.L., Sánchez P., Influence of the Catalytic Support on the Industrial Fischer-Tropsch Synthetic Diesel Production, Catal. Today, 176: 298-302 (2011).
[9] Ali S., Zabidi N.A.M., Al-Marri M.J., Khader M.M., Effect of the Support on Physicochemical Properties and Catalytic Performance of Cobalt Based Nano-Catalysts in Fischer-Tropsch Reaction, Mater. Today Commun., 10: 67–71 (2017).
[10] Vosoughi V., Badoga S., Dalai A.K., Abatzoglou N., Modification of Mesoporous Alumina as a Support for Cobalt-Based Catalyst in Fischer-Tropsch Synthesis, Fuel Process. Technol., 162: 55–65 (2017).
[11] Jalama K., Coville N.J., Xiong H., Hildebrandt D., Glasser D., Taylor S., Carley A., Anderson J.A., Hutchings G.J., A Comparison of Au/Co/Al2O3 and Au/Co/SiO2 Catalysts in the Fischer–Tropsch Reaction, Appl. Catal. A., 395(1-2): 1–9 (2011).
[13] Mirzaei A.A., Sarani R., Azizi H.R., Vahid S., Oliaei-Torshizi H., Kinetics Modeling of Fischer–Tropsch Synthesis on the Unsupported 4 Fe–Co–Ni (Ternary) Catalyst Prepared Using co-Precipitation Procedure, Fuel, 140: 701–710 (2015).
[14] Ernst B., Libs S., Chaumette P., Kiennemann A., Preparation and Characterization of Fischer–Tropsch Active Co/SiO2 Catalysts, Appl. Catal. A., 186(1-2): 145–168 (1999).
[15] Feyzi M., Mirzaei A.A., Catalytic behaviors of Co-Mn/TiO2 Catalysts for Fischer–Tropsch Synthesis, J. Fuel Chem. Technol., 40(12): 1435–1443 (2012).
[16] Lögdberg S., Lualdi M., Järås S., Walmsley J.C., Blekkan E.A., Rytter E., Holmen A., On the Selectivity of Cobalt-Based Fischer–Tropsch Catalysts: Evidence for a Common Precursor for Methane and Long-Chain Hydrocarbons, J. Catal., 274(1): 84–98 (2010).
[17] Hadadzadeh H., Rezvani A.R., Salehi Rad A.R., Khozeymeh E., A Novel Method for Preparation of Alumina-Supported Rhenium-Cesium Catalyst, Re-Cs/γ-Al2O3, Iran. J. Chem. Chem. Eng. (IJCCE), 27(3): 37-43 (2008).
[19] Farzanfar J., Rezvani A.R., Inorganic Complex Precursor Route for Preparation of High-Temperature Fischer–Tropsch Synthesis Ni–Co Nanocatalysts, Res. Chem. Intermed., 41(11): 8975–9001 (2015).
[20]Ye J., Su H., Bai F., Du Y., Zhang Y., Synthesis, Crystal Structure and Properties of a New Lanthanide-Transitionmetal Carbonyl Cluster, Appl. Organometal. Chem., 23: 86–90 (2009).
[22] Saravani H., Ghahfarokhi M.T., Esmaeilzaei M.R., Synthesis and Characterization of Superparamagnetic NiBaO2 Nano-Oxide Using Novel Precursor Complex [Ba(H2O)8][Ni(dipic)2], J. Inorg. Organomet. Polym., 26: 660-666 (2016).
[24] Nakamoto K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Wiley-Interscience, New York (1997).
[25] Shakirova O.G., Lavrenova L.G., Korotaev E.V., Kuratieva N.V., Kolokolov F.A., Burdukov A.B., Structure and Spin Crossover in an Iron (II) Compound with Tris(pyrazol-1-yl)methane and the Complex Eu(dipic)2(Hdipic)]2– Anion, J. Struct. Chem., 57: 471-477 (2016).
[26] Siddiqi Z.A., Khalid M., Shahid M., Kumar S., Sharma P.K., Siddique A., Anjuli, H-bonded Supramolecular Assembly via Proton Transfer: Isolation, X-Ray Crystallographic Characterization and SOD Mimic Activity of [Cu(dipic)2]2[PA-H]4. 5H2O, J. Mol. Struct., 1033: 98-103 (2013).
[27] Kirillova M.V., Kirillov A.M., DaSilva M.F.C.G., Kopylovich M.N., DaSilva J.J.R.F., Pombeiro A.J.L., 3D Hydrogen Bonded Metal-Organic Frameworks Constructed from [M(H2O)6][M'(dipicolinate)2].mH2O (M/M' = Zn/Ni or Ni/Ni). Identification of Intercalated Acyclic (H2O)6/(H2O)10 Clusters, Inorg. Chim. Acta, 361(6): 1728–1737 (2008).
[29] Renuka N.K., Shijina A.V., Praveen A.K., Mesoporous γ-Alumina Nanoparticles: Synthesis, Characterization and Dye Removal Efficiency, Mater. Lett., 82: 42–44 (2012). 
[31] Savost'yanov A.P., Yakovenko R.E., Narochniy G.B., Sulima S.I., Bakun V.G., Soromotin V.N., Mitchenko S.A., Unexpected Increase in C5+ Selectivity at Temperature Rise in High Pressure Fischer-Tropsch Synthesis over Co-Al2O3/SiO2 Catalyst, Catal. Commun., 99: 25–29 (2017).
[32] Sedighi B., Feyzi M., Joshaghani M.,Preparation and Characterization of Co–Fe Nano Catalyst for Fischer–Tropsch Synthesis: Optimization Using Response Surface Methodology, J. Taiwan Inst. Chem. Eng., 50: 108–114 (2015).
[33] Tian L., Huo C.F., Cao D.B., Yang Y., Xu J., Wu B.S., Xiang H.W., Xu Y.Y., Li Y.W., Effects of Reaction Conditions on Iron-Catalyzed Fischer–Tropsch Synthesis: A Kinetic Monte Carlo Study, J. Mol. Struct. THEOCHEM, 941(1-3): 30–35 (2010).