Dicationic Ionic Liquid as the Recyclable Catalyst for the Synthesis of Quinoxaline Derivatives

Document Type : Research Article


1 College of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, 343009, P.R. CHINA

2 Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, 210094, P.R. CHINA


An efficient and eco-friendly protocol for the synthesis of quinoxaline derivatives employing a condensation reaction between 1,2-diketone and 1,2-diaminobenzene derivative has been developed. The reaction of  1,2-diketone and 1,2-diaminobenzene derivative was carried out in water at room temperature using 10 mol% of task-specific dicationic ionic liquid as a catalyst. The results show that the reactions catalyzed by the dicationic ionic liquid proceeded smoothly to give the corresponding products. High yields of the products, short reaction times, mild reaction conditions and simple experimental procedure make this protocol complementary to the existing methods. Further, the catalyst can be reused for several times without obvious loss of the catalytic activity.


Main Subjects

[1] Seitz L.E., Suling W.J., Reynolds R.C., Synthesis and Antimycobacterial Activity of Pyrazine and Quinoxaline Derivatives, J. Med. Chem., 45(25): 5604-5606 (2002).
[3] Zaragoza F., Stephensen H., Solid-Phase Synthesis of Substituted 4-Acyl-1,2,3,4-Tetrahydroquinoxalin-2-Ones, J. Org. Chem., 64(7): 2555-2557 (1999).
[4] Uxey T., Tempest P., Hulme C., Two-Step Solution-Phase Synthesis of Novel Quinoxalinones Utilizing a UDC (Ugi/De-Boc/Cyclize) Strategy, Tetrahedron Lett., 43(9):1637-1639 (2002).
[5] Santivañez V.M., Pérez S.S., Torres E., Moreno V.E., Design and Synthesis of Novel Quinoxaline Derivatives as Potential Condidates for Treatment of Multidrug-Resistant and Latent Tuberculosis, Bioorg. & Med. Chem. Lett., 26(9): 2188-2193, (2016).
[7] Thomas K.R.J., Marappan V., Jiann T.L., Chang-Hao C., Yu-ai T., Chromophore-Labeled Quinoxaline Derivatives as Efficient Electroluminescent Materials, Chem. Mater., 17(7): 1860-1866 (2005).
[8] Mizuno T., Wei W.H., Eller L.R., Sessler J.L., Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites: Efficient Fluoride Anion Receptors, J. Am. Chem. Soc., 124(7):1134-1135 (2002).
[10] Crosslev J.M., Johnston L.A., Laterally-Extended Porphyrin Systems Incorporating a Switchable Unit, Chem. Commun., 1122-1123 (2002).
[12] Raw S.A., Wilfred C.D., Taylor R.J.K., Tandem Oxidation Processes for the Preparation of Nitrogen-Containing Heteroacromatic and Heterocyclic Compounds, Org. Biomol. Chem., 2(5): 788-796 (2004).
[13] Raw S.A., Wilfred C.D., Taylor R.J.K., Preparation of Quinoxalines, Dihydropyrazines, Pyrazines and Piperazines Using Tandem Oxidation Processes, Chem. Commun., 2286-2287 (2003).
[14] Heravi M.M., Taheri S., Bakhtiari K., Oskooie H.A., On Water: A Practical and Efficient Synthesis of Quinoxaline Derivatives Catalyzed by CuSO4·5H2O, Catal. Commun., 8(2): 211-214 (2007).
[15] Heravi M.M., Tehrani M.H., Bakhtiari K., Oskooie H.A., Zn[(L)Proline]: A Powerful Catalyst for the Very
Fast Synthesis of Quinoxaline Derivatives at Room Temperature
, Catal. Commun., 8(9):1341 (2007).
[17] Antoniotti S., Donach E., Direct and Catalytic Synthesis of Quinoxaline Derivatives from Epoxides and Ene-1,2-Diamines, Tetrahedron Lett., 43: 3971-3973 (2002).
[19] Wu Z., Ede N.J., Solid-Phase Synthesis of Quinoxalines on SynphaseTM Lanterns, Tetrahedron Lett., 42:8115-8118 (2001).
[20] Xekoukoulotakis N.P., Hadjiantonious M.C.P., Maroulis A.J., Synthesis of Quinoxalines by Cyclization of α-Arylimino Oximes of α-Dicarbonyl Compounds, Tetrahedron Lett., 41: 10299-10302 (2000).
[21] Zhao Z., Wisnoski D.D., Wolkenberg S.E., Leister W.H., Wang Y., Lindsley C.W., General Microwave-Assisted Protocols for the Expedient Synthesis of Quinoxalines and Heterocyclic Pyrazines, Tetrahedron Lett., 45: 4873-4876 (2004).
[22] Bhosale R.S., Sarda S.R., Ardhapure S.S., Jadhav W.N., Bhusare S.R., Pawar R.P., An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature using Molecular Iodine as the Catalyst, Tetrahedron Lett., 46: 7183-7186 (2005).
[23] More S.N., Sastry M.N.V., Wang C.C., Yao C.F., Molecular Iodine: a Powerful Catalyst for the Easy and Efficient Synthesis of Quinoxalines, Tetrahedron Lett., 46: 6345-6348 (2005).
[24] Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev., 99: 2071-2084 (1999).
[26] Kai G., Dong F., Hua-Lan W., Xin-Li Z., Zu-Liang L., The One-Pot Synthesis of 14-Alkyl- or Aryl-14H-Dibenzo[a,j]Xanthenes Catalyzed by Task-Specific Ionic Liquid, Dyes and Pigments, 80: 30-33 (2009).
[27] Fang D., Luo J., Zhou X., Ye Z., Liu Z.L., Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts for Firscher Esterifications, Ind. Eng. Chem. Res., 45: 7982-7984 (2006).
[28] Fang D., Cheng J., Gong K., Shi Q., Liu Z.L., Synthesis of Coumarins via Pechmann Reaction in Water Catalyzed by Acyclic Acidic Ionic Liquids, Catal. Lett., 121(3): 255-259 (2008).
[29] Fang D., Zhang D.Z., Liu Z.L., One-Pot Three-Component Biginelli-Type Reaction Catalyzed by Ionic Liquids in Aqueous Media, Monatsh Chem., 141: 419-423 (2010).