Bis-DCM Type Dyes: Convenient Method for Synthesis of 2-(2, 6-bis(4-(dialkylamino)styryl)-4H -pyran-4-ylidene) Malononitrile Derivatives

Document Type : Research Article


Organic Synthesis Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. IRAN


An efficient and convenient method for synthesis of 2,6-bis (4-(dialkylamino) styryl)-4H-pyran-4-one starting from 4- (dialkylamino) benzaldehyde with 2,6-dimethyl-4H-pyran-4-onein the presence of MeONa as the base was described. Additionally, preparation of novel compounds with bis-DCM-type skeleton for application in organic light-emitting diodes was developed via reaction of malononitrile as active methylene group with 2,6-bis (4-(dialkylamino) styryl) -4H-pyran-4-one derivatives. 1H and 13C NMR, FT-IR spectroscopy supported the predicted structure of the products. The UV-Vis absorption spectra of synthesis compound were measured in diluted dichloromethane solution. Maximum absorption (lmax) values differ from 460 to 496 nm, this absorption is due to π-π* transition.


Main Subjects

[1] Hung L.S., Chen C.H., Recent Progress of Molecular Organic Electroluminescent Materials and Devices, Mater. Sci. Eng:R., 39 (5-6): 143-222 (2002).
[2] Strohriegel P., Grazulevicius J.V., Charge-Transporting Molecular Glasses, Adv. Mater., 14(20): 1439-1452 (2002).
[3] Bassani D.M., Jonusauskaite L., Lavie-Cambot A., McClenaghan N.D., Pozzo J.L., Ray D., G,Vives, Coord. Harnessing Supramolecular Interactions
in Organic Solid-State Devices: Current Status and Future Potential,
Chem. Rev., 254(19-20): 2429-2445 (2010).
[5] Sandstrom J., Wenoerbeck I., Studies of Polarised Ethylenes, Acta Chem. Scand., 24(4): 1191-1201 (1970).
[6] Sandstrom J., Sterechemistry, Top. Stereochem., 14: 83-84 (1983).
[7] LeCours S.M., Guan H.W., DiMagno S.G., Wang C.H., Therien M.J., Push−Pull Arylethynyl Porphyrins:  New Chromophores That Exhibit Large Molecular First-Order Hyperpolarizabilities, J. Am. Chem. Soc., 118(6): 1497-1503 (1996).
[8] Marder S.R., Gorman C.B., Meyers F., Perry J.W., Bourhill G., Bredas J.L., Pierce B.M., A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes, Science., 265(5172): 632-635 (1994). 
[9] Verbiest T., Houbrechts S., Kauranen M., Clays K., Persoons A., Second-Order Nonlinear Optical Materials: Recent Advances in Chromophore Design, J. Mater. Chem., 7(11): 2175-2189 (1997).
[10] Markovic R., Dzambaski Z., Baranac M., Stereo- and Regiocontrol of Electrophile-Initiated Rearrangement of Push–Pull 5-Substituted 4-Oxothiazolidine Derivatives, Tetrahedron., 57(27): 5833-5841 (2001).
[11] Jayamurugan G., Dumele O., Gisselbrecht J.P., Boudon C., Schweizer W.B., Bernet B., Diederich F., Expanding the Chemical Structure Space of Opto-Electronic Molecular Materials: Unprecedented Push–Pull Chromophores by Reaction of a Donor-Substituted Tetracyanofulvene with Electron-Rich Alkynes, J. Am. Chem. Soc., 135(9): 3599-3606 (2013).
[12] Chen Z., E.Burrows P., Bulovic V., Forrest S.R., Thompson M.E., Three-Color, Tunable, Organic Light-Emitting Devices, Science., 276(5321): 2009-2011 (1997).
[13] Kwong R.C., Lamansky S., Thompson M.E., Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes, Adv. Mater., 12(15): 1134-1138 (2000).
[14] Shirota Y., Kuwabara Y., Okuda D., Okuda R., Ogawa H., Inada H., Wakimoto T., Nakada H., Yonemoto S., Kawami Y., Starburst Molecules Based on π-Electron Systems as Materials for Organic Electroluminescent Devices, J. Lumin., 72-74: 985-991 (1997).
[15] Yang L., Guan M., Nie D., Lou B., Liu Z., Bian Z., Bian J., Huang C., Efficient, Saturated red Electroluminescent Devices with Modified Pyran-Containing Emitters, Opt. Mater., 29(12): 1672-1679 (2007).
[16] Kwak G., Wang S., Choi M.S., Kim H., Choi K.H., Han Y.S., Hur Y., Kim S.H., 2D–π–A Type Pyran-Based Dye Derivatives: Photophysical Properties Related to Intramolecular Charge Transfer and Their Electroluminescence Application, Dyes Pigments., 78(1): 25-33 (2008).
[17] Yao Y.S., Xiao J., Wang X.S., Deng Z.B., Zhang B.W., Starburst DCM-Type Red-Light-Emitting Materials for Electroluminescence Applications, Adv. Funct. Mater., 16(5): 709-718 (2006).
[18] Ma C.Q., Liang Z., Wang X.S., Zhang B.W., Cao Y., Wang L.D., Qiu Y., A Novel Family of Red Fluorescent Materials for Organic Light-Emitting Diodes, Synth. Met., 138(3): 537-542 (2003).
[19] Chen C.H., Tang C.W., Shi J., Klubek K.P., Recent Developments in the Synthesis of Red Dopants for Alq3 Hosted Electroluminescence, Thin Solid Films., 363(1-2): 327-331 (2000).
[20] Chang Y.J., Chow T.J., Highly Efficient red Fluorescent Dyes for Organic Light-Emitting Diodes, J. Mater. Chem., 21(1): 3091-3099(2011).
[21] Wang S., Kim S.H., New Solvatochromic Merocyanine Dyes Based on Barbituric Acid and Meldrum's Acid, Dyes Pigments., 80(3): 314-320 (2009).
[22] Kim D.U., Paik S.H., Kim S.H., Tak Y.H., Han Y.S., Kim S.D., Kim K.B., Ju H.J., Kim T., Electro-Optical Characteristics of Indandione-Pyran Derivatives as Red Emission Dopants in Electroluminescent Device, J, Mater. Sci. Eng.C., 24(1-2): 147-149 (2004).
[23] Jianzhong C., Suh H.J., Kim S.H., Synthesis and Properties of Conjugated Copolymers with 2-Pyran-4-Ylidene Malononitrile, Dyes Pigments., 68(1): 75-77 (2006).
[24] Hwang D.H., Lee J.D., Lee M.J., Lee C., Organic Light-Emitting Diode Using a New DCM Derivative as an Efficient Orange–Red Doping Molecule, Curr. Appl. Phys., 5(3): 244-248 (2005).
[25] Andreu R., Carrasquer L., Garin J., Modrego M.J., Orduna J., Alicante R., Vilcampa B., Allian M., New One- and Two-Dimensional 4H-Pyranylidene NLO-Phores, Tetrahedron Lett., 50(24): 2920-2924 (2009).
[26] Andreu R., Franco S., Galįn E., Garin J., De Baroja M.N., Momblona C., Orduna J., Alicante R., Villacampa B., Isophorone- and Pyran-Containing NLO-Chromophores: A Comparative Study, Tetrahedron Lett., 51(28): 3662-3665 (2010).
[28] Do D.Y., Park S.K., Ju J.J., Park S., Lee M.H., Nonlinear Optical Polyimides with Various Substituents on Chromophores: Synthesis and Glass Transition Temperature, Opt. Mater., 26(3): 223-229(2004).
[29] Kim P.J., Kwon O.P., Jazbinsek M., Yun H., Gunter P., The Influence of Pyrrole Linked to the π-conjugated Polyene on Crystal Characteristics and Polymorphism, Dyes Pigments., 86(2): 149-154(2010).
[30] Chen P.Y., Herng Y.U., Yokoyama M., New Double Graded Structure for Enhanced Performance in White Organic Light Emitting Diode, J. Lumin., 130(10): 1764-1767 (2010)
[31] Zhang X.H., Chen B.J., Lin X.Q., Wong O.Y., Lee C.S., Kwong H.L., Lee S.T., Wuu S.K., A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electroluminescent Devices, Chem. Mater., 13(5): 1565-1569 (2001).
[32] Jung K.Y., Kim Y.S., Theoretical Studies of DCM Derivatives with Dual Electron Donating Group, Mol. Cryst. Liq. Cryst., 538(1): 45-52 (2011)
[33] Guo Z., Zhu W., Tian H., Dicyanomethylene-4H-Pyran Chromophores for OLED Emitters, Logic Gates and Optical Chemosensors, Chem. Commun., 48: 6073-6084 (2012)
[34] Jung B.J., Lee J.I., Chu H.Y., Do L.M., Lee J., Shim H.K., A New Family of Bis-DCM Based Dopants for Red OLEDs, J. Mater. Chem., 15: 2470-     (2005).
[35] Jung B.J., Yoon C.B., Shim H.K., Do L.M., Zyung T., Pure-Red Dye for Organic Electroluminescent Devices: Bis-Condensed DCM Derivatives, Adv. Funct. Mater., 11(6): 430-434(2001).
[36] Gan J.A., Song Q.L., Hou X.Y., Chen K., Tian H., 1,8-Naphthalimides for Non-Doping OLEDs: The Tunable Emission Color from Blue, Green to Red, Photochem J.. Photobiol., A: Chemistry., 162(2-3): 399-406 (2004).