Gold (I) Complexes of 2,2'-Biimidazolate Ligand: Syntheses and Spectral Properties of Hetero-polymetallic Complexes Having Ru2Au2 Core

Document Type : Research Article


Department of Chemistry, Serampore College, Serampore. District- Hooghly, Pin-712201. West Bengal, INDIA


The reaction of [Ru(L)2(H2biim)](ClO4)2 [L1 = 2,2¢-bipyridine (bpy) or L2 =  2-(phenylazo)pyridine (pap) and H2biim = 2,2¢-biimidazole] with Au(tht)Cl (tht = tetrahydrothiophene) in presence of base in methanol produced a terametallic cationic complex [{Ru(L)2(biim)}2Au2]2+, [1]2+ which was isolated as its perchlorate salt. The compounds were characterized by various spectroscopic techniques. ESIMS data of these fully corroborate with their formulation. Spectral data of all the polymetallic systems are reported and compared. The redox properties of the complexes are interesting. The complex [{Ru(bpy)2(biim)}2Au2](ClO4)2 showed one irreversible metal based oxidation at 1.43 V whereas the compound [{Ru(pap)2(biim)}2Au2](ClO4)2 showed one irreversible ligand based oxidation at 1.34 V. This type of binding mode of the biimidazolate anion containing Ru2Au2 core is rare in the literature. ‘Metal complex as ligand’ strategy provides a platform for the synthesis novel polymetallic complexes of gold(I).


Main Subjects

    (b) Meyer T.J., Chemical Approaches to Artificial Photosynthesis, Acc. Chem. Res., 22: 163-170 (1989).
    (e) Connors P.J., Tzalis J.D., Dunnick A.L., Tor Y., Coordination Compounds as Building Blocks:  Single-Step Synthesis of Heteronuclear Multimetallic Complexes Containing RuII and OsII, Inorg. Chem., 37: 1121-1123 (1998).
     (f) Sauvage J.P., Interlacing Molecular Threads on Transition Metals: Catenands, Catenates, and Knots, Acc. Chem. Res., 23: 319-327 (1990).
     (g) Diederich F, Molecular Recognition in Aqueous Solution: Supramolecular Complexation and Catalysis, J. Chem. Edu., 67: 813-820 (1990).
     (h) Gruia L.M., Rochon F.D., Beauchamp A.L., Synthesis, Characterization and Crystal Structures of Cd(II) and Zn(II) Complexes with 2,2′-BiimidazoleInorganica Chimica Acta, 360: 1825-1840 (2017).
     (i) Laurila E., Oresmaa L., Niskanen M., Hirya P., Haukka M. Cryst. Growth Des. 10: 3775 (2010).
[2] (a) Balzani V., Scandola F., “Supramolecular Photochemistry”, Ellis Horwood: Chichester, U. K. (1991).
      (b) Sun L., Berglund H., Davydov R., Norrby T., Hammarström L., Korall P., Börje A., Philouze A., Berg K., Tran A., Andersson M., Stenhagen G., Mårtensson J., Almgren M., Styring S., Åkermark A., Binuclear Ruthenium−Manganese Complexes as Simple Artificial Models for Photosystem II in Green Plants, J. Am. Chem. Soc., 119: 6996-7004 (1997).
[3] (a) de Silva A.P., Gunaratne H.Q.N., Gunnlaugsson T., Huxley A.J.M., McCoy C.P., Rademacher J.T., Rice T.E., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev., 97: 1515-1566 (1997).
      (b) Voyer N., Maltais F., A Novel Supramolecular Device with a Tunable Absorption Spectrum, Adv. Mater, 5: 568-570 (1993).
[4] (a) Choukroum R., Gervais D., Kalck P., Senocq F., J. Organomet. Chem., 335: C9-C12 (1987).
     (b) Mutin R., Lucas C., Thivole-Cazat J., Dufand V., Dany F., Basset J.M., Bi-Metallic Activation in Homogeneous Catalysis: Palladium-Catalysed Carbonylation of Tricarbonyl(chloroarene)chromium Complexes to the Corresponding Aldehydes, Esters, Amides, and α-oxo Amides, J. Chem. Soc. Chem. Commun.. 896-898 (1988).
     (c) Esteruelas M.A., Garcia M.P., Lopez A.M., Oro L.A., Indirect Cooperative Effects Leading to Synergism in Bimetallic Homogeneous Catalysts Containing Azolates as Bridging Ligands, Organometallics, 10: 127-133 (1991).
     (d) Sola E., Bakhmutov V.I., Torres F., Elduque A., Lopez J.A., Lahoz F., Werner H., Oro L.A., Cooperative Bimetallic Effects on New Iridium(III) Pyrazolate Complexes:  Hydrogen−Hydrogen, Carbon−Hydrogen, and Carbon−Chlorine Bond Activations, Organometallics, 17: 683-696 (1998).
[5] (a) Goher M.A.S., Mautner F.A., Transition Met. Chem., 24: 454-      (1999).
     (b) Albada GAvan, Smeets W.J.J., Spek A.L., Reedijk L., J. Coord. Chem., 47: 69-      (1999).
     (c) Shen Z., Zuo J.L., Yu Z., Zhang Y., Bai J.F., Che C.M., Fun H.K., Vittal J.J., You X.Z., Crystal Structures and Magnetic Properties of Two Alternating Azide-Bridged Complexes [{M(dmbpy)(N3)2}n] (M = Mn or Cu; dmbpy = 4,4′-dimethyl-2,2′-bipyridine), J. Chem. Soc. Dalton Trans., 3393-3397 (1999).
     (d) Munno G.De., Julve M., Verdaguer M., Bruno G., Bonding Flexibility of 2,2'-bipyrimidine (bpm): Symmetry and Magnetism of Three Copper(II) Complexes with Different Cu:bpm Ratios, Inorg. Chem., 32: 2215-2220 (1993).
     (e) Coronado E., Drillon M., Fuertes A., Beltran D., Mosset A., Galy J., Structural and Magnetic Study of Tetraaqua (EDTA) Dinickel Dihydrate [Ni2(EDTA)(H2O)4.cntdot.2H2O]. Alternating Lande Factors in a Two-Sublattice 1D System, J. Am. Chem. Soc., 108: 900-905 (1986). 
     (b) Miller J.S., Epstein A.J., Organic and Organometallic Molecular Magnetic Materials—Designer Magnets, Angew. Chem. Int. Ed. Engl., 33: 385-415 (1994).
[7] Lin X., Doble D.M.J., Blake A.J., Harrison A., Wilson C., Schröder M., Cationic Assembly of Metal Complex Aggregates:  Structural Diversity, Solution Stability, and Magnetic Properties, J. Am. Chem. Soc., 115: 9476-9483 (2003).
[8] Sydora O.L., Wolczanski P.T., Lobkovsky E.B., Ferrous Wheels, Ellipse [(tBu3SiS)FeX]n, and Cube [(tBu3SiS)Fe(CCSitBu3)]4 , Angew. Chem. Int. Ed., 42: 2685-2687 (2003).
[9] Galán-Mascarós J.R., Dunbar K.R., A Self-Assembled 2D Molecule-Based Magnet: The Honeycomb Layered Material {Co3Cl4(H2O)2[Co(Hbbiz)3]2}, Angew. Chem. Int. Ed., 42: 2289-2293 (2003).
[10] Seidel S.R., Stang P.J., High-Symmetry Coordination Cages via Self-Assembly, Acc. Chem. Res., 35: 972-983 (2002).
[11] Holliday B.J., Mirkin C.A., Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry, Angew. Chem. Int. Ed., 40: 2022-2043 (2001).
[12] Winpenny R.E.P., Serendipitous Assembly of Polynuclear Cage Compounds, J. Chem. Soc., Dalton. Trans. 1-10 (2002).
[13] Thompson L.K., Polynuclear Coordination Complexes—From Dinuclear to Nonanuclear and Beyond, Coord. Chem. Rev., 233-234: 193 (2002).
[14] Campagna S., Pietro C.D., Loiseau F., Maubert B., McClenaghan N., Passalacqua R., Puntoriero F., Ricevuto V., Serroni S., Coord. Chem. Rev., 229: 67 (2002).
[15] Pal I., Basuli F., Mak T.C.W., Bhattacharya S., Synthesis, Structure, and Properties of a Novel Heterooctametallic Complex Containing a Cyclic Ru4Ni4 Core, Angew. Chem. Int. Ed., 40: 2923-2925 (2001).
[16] Benkstein K.D., Hupp J.T., Stern C.L., Luminescent Mesoporous Molecular Materials Based on Neutral Tetrametallic Rectangles, Angew. Chem. Int. Ed., 39: 2891-2893 (2000).
[17] Su C.-Y., Cai Y.-P., Chen C.-L., Kang B.-S., Unusual Noninterpenetrating (3,6) Topological Network Assembled by Semirigid Benzimidazole-Based Bridging Ligand, Inorg. Chem., 40: 2210-2211 (2001).
[18] Haga M., Ali Md.M., Arakawa R., Proton‐Induced Switching of Electron Transfer Pathways in Dendrimer‐Type Tetranuclear RuOs3 Complexes, Angew. Chem. Int. Ed. Engl., 35: 76-78 (1996).
[19] Serroni S., Denti G., Campagna S., Juris A., Ciano M., Balzani V., Arborols Based on Luminescent and Redox-Active Transition Metal Complexes, Angew. Chem. Int. Ed. Engl., 31: 1493-1495 (1992).
[23] Haga M., Ali M.Mdi., Maegawa H., Nozaki K., Yoshimura A., Ohno T., Coord. Chem. Rev., 132: 99-      (1994).
[25] Rillema D.P., Sahai R., Matthews P., Edwards A.K., Shaver R.J., Morgan L., Multimetallic Ruthenium(II) Complexes Based on Biimidazole and Bibenzimidazole: Effect of Dianionic Bridging Ligands on Redox and Spectral Properties , Inorg. Chem., 29: 167-175 (1990).
[26] Mayboroda A., Comba P., Pritzkow H., Rheinwald G., Lang H., Koten Gvan, Heterotrinuclear Complexes of the Platinum Group Metals with 2,2′-Biimidazole as a Bridging Ligand, Eur, J. Inorg. Chem., 2003: 1703-1710 (2003).
[27] Kaiser S.W., Saillant R.B., Butler W.M., Rasmussen P.G., Rhodium and Iridium Complexes of Biimidazole. 1. Mononuclear and Dinuclear Species, Inorg. Chem., 15: 2681-2688 (1976).
[29] Carmona D., Ferrer J., Mendoza A., Lahoz F.J., Oro L.A., Viguri F., Reyes J., Heterobi- and Heterotetranuclear RuRh and RuIr Complexes with 2,2'-Biimidazolate and 2,2'-Bibenzimidazolate Anions as Bridging Ligands, Organometallics, 14: 2066-2080 (1995).
[30] Usón R., Gimeno J., Forniés J., Martinez F., Binuclear Organopalladium(II) Complexes with Bridging Biimidazolate, Bibenziimidazolate or Tetramethylbiimidazolate Anions, Inorg. Chim. Acta., 50: 173-177 (1981).
[31] Kaiser S.W., Saillant R.B., Butler W.M., Rasmussen P.G., Rhodium and Iridium Complexes of Biimidazole. 2. Tetranuclear Carbonyl Derivatives, Inorg. Chem., 15: 2688-2694 (1976).
[32] (a) Döring M., Uhlig E., Brodersen K., Wolski A., Metallionenaustausch im System Acetylacetonat/ Halogenid/Tetrahydrofuran, Z. Anorg. Allg. Chem., 619: 753-760 (1993).
     (b) Döring M., Görls H., Uhlig E., Brodersen K., Dahlenburg L., Wolski A., Zur Addition von Übergangsmetallhalogeniden an Acetylacetonate zweiwertiger Metallionen, Z. Anorg. Allg. Chem., 614: 65-72 (1992).
     (c) Döring M., Uhlig E., Dahlenburg L., Die Bnuklearen Produkte der Umsetzung von rignardreagenzien mit Acetylacetonaten der späten 3d-Elemente und ihre katalytische Wirkung bei der Kreuzkopplung,
Z. Anorg. Allg. Chem., 578: 58-68 (1989).
    (e) Saalfrank R. W., Maid H., Mooren N., Hampel F.,  Durch Selbstorganisation zu Hybriden Metallacoronaten Oder Eindimensionalen, Oxoverbrückten Metallsträngen-Koordinationszahl-Gesteuerte Produktbildung, Angew. Chem. Int. Ed., 114: 323-326 (2002).
    (e) Saalfrank R.W., Maid H., Mooren N., Hampel F., Hybrid Metallacoronates or One-Dimensional Oxo-Bridged Metal Strings by Self-Assembly—Coordination Number Controlled Product Formation, Angew. Chem. Int. Ed., 41: 304-307 (2002).
[33] (a) Kamar K.K., Falvello L.R., Fanwick P.E., Kim J., Goswami S., Designed Synthesis of a Multimetallic System Having Ru4Cu2 Core Using Trimetallic Coordination of 2,2′-biimidazolate Ion, J. Chem. Soc. Dalton. Trans., 1827-1831 (2004).
      (b) Chaterjee S., Kamar K.K., Hursthouse M.B., Light M.E., Goswami S., J. Chem. Sec A., 45A: 845 (2006).
[34] Pyykkö P., Strong Closed-Shell Interactions in Inorganic Chemistry, Chem. Rev., 97: 597-636 (1997).
[35] Cotton F.A., Feng X., Matusz M., Poli R., Experimental and Theoretical Studies of the Copper(I) and Silver(I) Dinuclear N,N'-di-p-tolylformamidinato Complexes, J. Am. Chem. Soc., 110: 7077-7083 (1988).
[36] Siemeling U., Vorfeld U., Neumann B., Stammler H.G., Cuprophilicity? a Rare Example of a Ligand-Unsupported CuI–CuI Interaction, Chem. Commun., 1723-1724 (1997).
[37] Singh K., Long J.R., Stavropoulos P., Ligand-Unsupported Metal−Metal (M = Cu, Ag) Interactions between Closed-Shell d10 Trinuclear Systems, J. Am. Chem. Soc., 119: 2942-2943
[38] Shan H., Sharp P.R., Double Oxygen Atom Centered Rhodium–Gold Clusters, Angew. Chem. Int. Engl., 35: 635-636 (1996).
[39] Ahrens B., Jones P.G., Fischer A.K., The Role of N–H·Cl Hydrogen Bonds in Gold(I) Complexes with Aliphatic Amine Ligands, Eur. J. Inorg. Chem, 1103-1110 (1999).
[40] Grohmann A., Gold in Chains: Self-Assembly of a Gold(I) Catenane, Angew. Chem. Int. Ed. Engl., 34: 2107-2109 (1995).
[41] Uson R., Laguna A., Laguna M., (Tetrahydrothiophene) Gold (I) or Gold (III) Complexes, Inorg. Synth., 26: 85-91 (1989).
[43] Marco G.D., Bartolotta A., Ricevuto V., Campagna S., Denti G., Sabatino L., Rosa G.D., Synthesis, Absorption Spectra, and Photochemical Behavior of Mono- and Dinuclear Ruthenium(II) Complexes, Inorg. Chem., 30: 270-275 (1991).
[44] Denti G.D., Campagna S., Sabatino L., Serroni S., Ciano M., Balzani V., Luminescent and Redox-Reactive Building Blocks for the Design of Photochemical Molecular Devices: Mono-, di-, tri-, and Tetranuclear Ruthenium(II) Polypyridine Complexes, Inorg. Chem., 29: 4750-4758 (1990).
[45] (a) Adams R.N., “Electrochemistry at Solid Electrodes”, Marcel-Dekker Inc. N. Y. (1969).
       (b) Weissberger A., Rossiter B.W., “Technique of Chemistry”, Vol. 1 Part IIA Wiley-Interscience N. Y. (1971).
       (c) Sawyer D.T., Roberts J.L. Jr. “Experimental Electrochemistry for Chemists”, John Wiley and Sons, Inc., N. Y. (1974).
       (d) Fry A.J., “Synthetic Organic Electrochemistry”, Harper and Row Publishers N. Y. (1972).
       (e) Dryhurst G., “Electrochemistry of Biological Molecules”, Academic Press N. Y. (1977).
       (f) Nicholson R.S., Shain I., Anal. Chem., 36: 706 (1964).
       (g) Matsuda H., Ayabe Y., Z. Electrochem., 59: 494- (1955).
       (h) Nicholson R.S., Anal. Chem., 37: 1351-    (1965).
       (i) Delahay P., Theory of Irreversible Waves in Oscillographic Polarography, J .Am. Chem. Soc., 75: 1190-1196 (1953).
       (j) Gokhshtein A.Y., Gokhshtein Y.P., Doklady Acad. Nauk. SSSR, 131: 601-      (1960).
       (k) Reimmuth W.H., Inversible Systems in Stationary Electrode Polarography, Anal. Chem., 32: 1891-1892 (1960).
       (b) Ghosh B.K., Mukhopadhyay A., Goswami S., Ray A., Chakravorty A., Structure of Blue-Violet OsX2L2 and Its Reactions with Bidentate Ligands (Dz-): Spectra and Electrochemistry of OsDL2(2-z)+ [X = Cl, Br; L = 2-(m-tolylazo)pyridine; z = 0-2], Inorg. Chem., 23: 4633-4639 (1984).
      (e) Morgan K.J., J. Chem. Soc., 2343 (1961).
      (f) Corrsin L., Fax B.J., Lord R.C., J. Chem. Phys. 21: 1170 (1953).
[48] (a) Jovanović, S., Obrenčević K., Bugarčić Ž. D., Popović I., Žakula J., Petrović B., New Bimetallic Palladium(II) and Platinum(II) Complexes: Studies of the Nucleophilic Substitution Reactions, Interactions with CT-DNA, Bovine Serum Albumin and Cytotoxic Activity, Dalton Transactions, 45: 12444-12457 (2016).
       (b) Bugarčić Ž. D., Bogojeski J., Petrović B., Hochreuther S., Eldik R. van., Mechanistic studies on the Reactions of Platinum(II) Complexes with Nitrogen- and Sulfur-Donor Biomolecules, Dalton Trans., 41: 12329-12345 (2012).
       (c) Soldatović T., Jovanović S., Bugarčić Ž. D., Eldik R. van., Substitution Behaviour of Novel Dinuclear Pt(II) Complexes with Bio-Relevant Nucleophiles, Dalton Transactions, 41: 876-884 (2012).
(d) Hochreuther S., Eldik R. van., Reactivity of a Cytostatic Active N,N-Donor-Containing Dinuclear Pt(II) Complex with Biological Relevant Nucleophiles, Inorganic Chemistry, 51: 3025-3038 (2012).