Pseudo-Five-Component Condensation for the Diversity-Oriented Synthesis of Novel Indoles and Quinolines Containing Pseudo-Peptides (Tricarboxamides)

Document Type : Research Article


1 Department of Chemistry, Faculty of Science, Alzahra University, Tehran, I.R. IRAN

2 School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, SOUTH AFRICA


A novel series of indole and quinoline tricarboxamides were synthesized using simple and efficient one-pot pseudo-five-component reactions of 2-formylindole or 2-chloro-3-formyl quinolines, isocyanides, amines, and Meldrum’s acid as a CH-acid in CH2Cl2 at room temperature. This conversion has been achieved via the construction of new bonds including two C-C bonds, two C-N bonds, and one C=O bond. Remarkably, three peptide bonds were formed through a domino sequence including Knoevenagel reaction, [1+4] cycloaddition, deacetonation and also, aminolysis reaction. Particularly, a number of structurally remarkable and pharmacologically significant products were provided in excellent yields.


Main Subjects

[1] (a) Toure B.B., Hall D.G., Natural Product Synthesis Using Multicomponent Reaction Strategies, Chem. Rev., 109(9):4439-4486 (2009);
   (b) Sunderhaus J.D., Martin S.F., Applications of Multicomponent Reactions to the Synthesis of Diverse Heterocyclic Scaffolds, Chem. Eur., 15(6):1300-1308 (2009);
      (c) Ganem, B. Strategies for Innovation in Multicomponent Reaction Design, Acc. Chem. Res., 42(3):463-472 (2009);
      (d) Ramadoss H., Kiyani H., Sheik Mansoor S., Triphenylphosphine Catalysed Facile Multicomponent Synthesis of 2-amino-3-cyano-6-methyl-4-aryl-4H-pyrans, Iran. J. Chem. Chem. Eng. (IJCCE), 36(1):19-26 (2017);
   (e) Hassanpour A., Hosseinzadeh-Khanmiri R., Ghorbanpour Kh., Abolhasani J., Mosaei Oskoei Y., Synthesis of 3,4-dihydroquinoxalin-2-amine, Diazepine-tetrazole and Benzodiazepine-2-Carboxamide Derivatives with the Aid of H6P2W18O62/Pyridino-Fe3O4, Iran. J. Chem. Chem. Eng. (IJCCE), 35 (4):39-47 (2016);
      (f) Mohammadi Ziarani Gh., Aleali F., Lashgari N., Badiei A.,An Efficient Green Approach for the Synthesis of Structurally Diversified Spirooxindoles Using Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H), Iran. J. Chem. Chem. Eng. (IJCCE), 35(1):17-23 (2016).
[2] (a) Souza D. M. D', Mueller T. J., Multicomponent Syntheses of Heterocycles by Transition-Metal Catalysis, J. Chem. Soc. Rev., 36(7):1095-1108 (2007);
      (b) Sadjadi S., Heravi M.M., Nazari N., Isocyanide-Based Multicomponent Reactions in the Synthesis of Heterocycles, RSC Adv. 6(58): 53203-53272 (2016).
[4] Doemling A., Ugi I., Multicomponent Reactions with Isocyanides, Angew. Chem. Int. Ed., 39(18): 3169-3210 (2000).
[5] Shaabani A., Maleki A., Rezayan A. H., Sarvary A., Recent Progress of Isocyanide-Based Multicomponent Reactions in Iran, Mol. Diversity, 15(1):41-68 (2011).
[6] Sadjadi S., Heravi M. M., Recent Application of Isocyanides in Synthesis of Heterocycles, Tetrahedron, 67(15):2707-2752 (2011).
[7] Ivachtchenko A. V., Ivanenkov Y.A., Kysil V. M., Krasavin M., Ilyin A. P., Multicomponent Reactions of Isocyanides in the Synthesis of Heterocycles, Russ. Chem. Rev. (Engl. Transl.), 79(9):787-817 (2010).
[8] (a) Ugi I., From Isocyanides via Four-Component Condensations to Antibiotic Syntheses, Angew. Chem. Int. Ed. Engl., 21(11):810-819 (1982);
    (b) Ugi I., Lohberger S., Karl R., “In Comprehensive Organic Synthesis” B. M. Trost, I. Fleming, Eds.; Pergamon Press: Oxford; Vol. 2, p 1083 (1991).
[9] Banfi L., Riva R., The Passerini Reaction, Org. React., 65:1-140 (2005).
[10] Nair V., Rajesh C., Vinod A.U., Bindu S., Sreekanth A.R., Mathess J.S., Balagopal L., Strategies for Heterocyclic Construction via Novel Multicomponent Reactions Based on Isocyanides and Nucleophilic Carbenes, Acc. Chem. Res., 36(12):899-907 (2003).
       (b) Sanudo M., Garcia-Valverde M., Marcaccini S., Delgado J. J., Rojo J., Torroba T., Synthesis of benzodiazepine β-turn Mimetics by an Ugi 4CC/Staudinger/Aza-Wittig Sequence, Solving the Conformational Behavior of the Ugi 4CC Adducts, J. Org. Chem., 74(5):2189-2192 (2009).
[12] Shaabani A., Soleimani E., Rezayan A. H., Sarvary A., Khavasi H.R., Novel Isocyanide-Based four-Component Reaction: A Facile Synthesis of Fully Substituted 3,4-dihydrocoumarin Derivatives, Org. Lett, 10(12):2581-2584 (2008).
[13] (a) Lipson V.V., Gorobets N.Y., One hundred Years of Meldrum’s Acid: Advances in the Synthesis of Pyridine and Pyrimidine Derivatives, Mol. Diversity, 13(4):399-419(2009);
       (b) Gaber AE.-A.O., McNab H., Synthetic Applications of the Pyrolysis of Meldrum’s Acid Derivatives, Synthesis, (14) 2059-2074 (2001);
[14] (a) Shaabani A., Yavari I., Teimouri M. B., Bazgir A., Bijanzadeh H. R., New and Efficient Synthesis of Dialkyl 2-[1-p-nitrophenyl-2-(alkylamino)-2-oxoethyl]malonates, Tetrahedron, 57(7):1375-1378 (2001);
       (b) Shaabani A., Teimouri M. B., Bijanzadeh H. R., An Efficient One-Pot Synthesis of Triamides and Amidodiesters, Russ. J. Org. Chem., 40(7): 976-981 (2004);
       (c) Shaabani A., Teimouri M. B., Bazgir A., Bijanzadeh H.R., Introducing a Novel Class of Four-Component Reactions, Mol. Diversity, 6(3):199-206 (2003);
     (d) Teimouri M.B., Akbari-Moghaddam P., An Efficient One-Pot Method for the Synthesis of Novel Ferrocene-Triamide Conjugates via pseudo Five-Component Reaction, Tetrahedron, 67(33): 5928-5933 (2011).
[16] Yavari I., Sabbaghan M., Ghazanfarpour-Darjani M., Hossaini Z., A Synthesis of 1-aryl-3,5-dioxo-tetrahydro-1H-pyrazoles from Reaction of Alkyl Isocyanides, Isopropylidene Meldrum’s and Arylhydrazines, J. Chem. Res., 2007(7): 392-393 (2007).
[17] Yavari I., Sabbaghan M., Hossaini Z., Reaction between Alkyl Isocyanides and Isopropylidene Meldrum’s Acid in the Presence of Bidentate Nucleophiles, Mol. Diversity, 11(1): 1-5 (2007).
[19] Shaabani A., Sarvary A., Soleimani E., Rezayan A. H., Heidary M., A Novel Method for the Synthesis of Substituted 3,4-dihydrocoumarin Derivatives via Isocyanide-Based Three-Component Reaction, Mol. Diversity, 12(3-4): 197-202 (2008).
[20] Habibi A., Tarameshloo Z., A New and Convenient Method for Synthesis of Barbituric Acid Derivatives, J. Iran. Chem. Soc., 8(1): 287-291 (2011).
[22] Bode J.W., Emerging Methods in Amide- and Peptide-Bond Formation, Curr. Opin. Drug Discovery, 9(6):765-775 (2006).
[23] Tian F.-F., Zhou P., Li Z.-L., T-Scale as a Novel Vector of Topological Descriptors for Amino Acids and its Application in QSARs of Peptides, J. Mol. Struct., 830(1-3): 106-115 (2007).
[24] Tan C., Zhang X., Jiang Y., Zhang D., Chen J., Antitumor Activity of Vilon Dipeptide Lys-Glu, Chin. Pharmacol. Bull. 23:233-236 (2007).
[26] Strom K., Sjogren J., Broberg A., Schnurer J., Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe-L -Pro) and Cyclo(L-Phe-trans-4-OH-L-Pro) and 3-Phenyllactic Acid, Appl. Environ. Microbiol. 68(9): 4322-4327 (2002).
[27] Tang X., Fan L., Yu H., Liao Y., Yang D., Facile Synthesis of Dipeptidomimetics of p-aminobenzoic Acid and Their Antidiabetic Activity, Chin. J. Org. Chem., 29(04): 595-600 (2009).
[28] Faden A.I., Movsesyan V.A., Knoblach S.M., Ahmed F., Cernak I., Neuroprotective Effects of Novel Small Peptides in Vitro and after Brain Injury, Neuropharmacology, 49(3): 410-424 (2005).
[29] Michael J.P., Quinoline, Quinazoline and Acridone Alkaloids, Nat. Prod. Rep., 21(5): 650-668 (2004).
[30] Denny W.A., Wilson W.R., Ware D.C., Atwell G.J., Milbank J.B., Stevenson R. J., U.S. Patent 7064117 (2006).
[31] Shah N.M., Patel M.P., Patel R.G., New N-arylamino Biquinoline Derivatives: Synthesis, Antimicrobial, Antituberculosis, and Antimalarial Evaluation, Eur. J. Med. Chem., 54: 239-247 (2012).
[32] D’Na D. D., Breytenbach J. C., Smith P. J., Lategan C., Synthesis, Cytotoxicity and Antimalarial Activity
of Ferrocenyl Amides of 4-Aminoquinolines
, Arzneimittelforschung, 60 (10): 627-635 (2010).
[33] Lilienkampf J., Mao B., Wan Y., Wang S.G., Franzblau A.P., Kozikowski J., Structure-Activity Relationships for a Series of Quinoline-Based Compounds Active Against Replicating and Nonreplicating Mycobacterium tuberculosis, J. Med. Chem., 52(7): 2109-2118 (2009).
[34] Mahamoud A., Chevalier J., Davin-Regli A., Barbe J., Pages J.-M., Quinoline Derivatives as Promising Inhibitors of Antibiotic Efflux Pump in Multidrug Resistant Enterobacter Aerogenes Isolates, Curr. Drug. Targets, 7(7):843-847 (2006).
[35] El-Gazzar A.B., Youssef M.M., Youssef A.M., Abu-Hashem A.A., Badria F.A., Design and Synthesis of Azolopyrimidoquinolines, Pyrimidoquinazolines as Anti-Oxidant, Anti-Inflammatory and Analgesic Activities, Eur. J. Med. Chem. 44(2): 609-624 (2009).
[36] Muruganantham N., Sivakumar R., Anbalagan N., Gunasekaran V., Leonard J.T., Synthesis, Anticonvulsant and Antihypertensive Activities of 8-Substituted Quinoline Derivatives, Biol. Pharm. Bull., 27(10): 1683-1687 (2004).
[37] Sun X.Y., He X.J., Pan C.Y., Liu Y.P., Zou Y.P., Synthesis and Study of the Antidepressant Activity of Novel 4,5-dihydro-7-alkoxy(phenoxy)-tetrazolo[1,5-a]quinoline Derivatives, Med. Chem. Res., 21(11): 3692-3698 (2012).
[38] Wilson W.D., Zhao M., Patterson S.E., Wydra R.L., Janda L., Strekowski L., Design of RNA Interactive Anti-HIV Agents: Unfused Aromatic Intercalators, Med. Chem. Res., 2: 102-110 (1992).
       (b) Shiri M., Mirpour-Marzoni S.Z., Bozorgpour-Savadjani Z., Soleymanifard B., Kruger H.G., Base-Catalyzed Cyclization of Ugi-Adducts to Substituted Indolyl Based γ-Lactams, Monatsh. Chem., 145(12):1947-1952 (2014);
       (c) Shiri M., Farajpour B., Bozorgpour-Savadjani Z., Shintre S. A., Koorbanally N. A., Kruger H. G., Notash B., Transition-Metal Free Highly Selective Aerobic Oxidation of Hindered 2-Alkylindoles, Tetrahedron, 71(34):5531-5537 (2015),
       (d) Zadsirjan V., Shiri M., Heravi M.M., Hosseinnejad T., Koorbanally N., Molecular Diversity in Cyclization of Ugi- Products Leading to the Synthesis of 2,5-Diketo Piperazines: Computationalstudy, Res. Chem. Intermed. 43(4): 2119-2142 (2017).
     (e) Shiri M., Ranjbar M., Yasaei Z., Zamanian F., Notash B., Palladium-catalyzed Tandem Reaction of 2-chloroquinoline-3-carbaldehydes and Isocyanides Org. Biomol. Chem., 15(47): 10073-10081 (2017).
[40] (a) Umkehrer M., Ross G., Jäger N., Burdack C., Kolb J., Hu H., Alvim-Gaston M., Hulme C., Expeditious Synthesis of imidazo[1,2-c]pyrimidines via a [4+1]-Cycloaddition, Tetrahedron Lett., 48(12): 2213-2216 (2007);
      (b) Wehner V., Stilz H.-U., Osipov S.N., Golubev A.S., Sieler J., Burger K., Trifluoromethyl-Substituted Hydantoins, Versatile Building Blocks for Rational Drug Design, Tetrahedron, 60(19):4295-4302 (2004);
      (c) Chatani N., Oshita M., Tobisu M., Ishii Y., Murai S., A GaCl3-catalyzed [4+1] Cycloaddition of α,β-unsaturated Carbonyl Compounds and Isocyanides Leading to Unsaturated γ-Lactone Derivatives J. Am. Chem. Soc., 125(26):7812-1813 (2003).
[41] (a) Oikawa Y., Hirasawa H., Yonemitsu O., Meldrum's Acid in Organic Synthesis. 1. A Convenient One-Pot Synthesis of Ethyl Indolepropionates, Tetrahedron Lett., 19(20): 1759-1762 (1978);
      (b) Oikawa Y., Sugano K., Yonemitsu O., Meldrum's Acid in Organic Synthesis. 2. A General and Versatile Synthesis of Beta.-Keto Esters, J. Org. Chem., 43(10):2087-2088 (1978).