An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water

Document Type : Research Article


1 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN

2 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN


Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in the presence of ordinary or magnetized water upon reflux condition. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives in two forms of water. However, the magnetized water showed better results. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work‐up procedure and avoids the use of harmful organic solvents. This method, therefore, represents a significant improvement over the methods currently available for the synthesis of fluoroquinolone derivatives.


Main Subjects

[1] Fernandes P.B., Shipkowitz N., Bower R.R., Jarvis K.P., Weisz J., Chu D.T., In-Vitro and in-Vivo Potency of Five New Fluoroquinolones Against Anaerobic Bacteria, J. Antimicrob. Chemother., 18(6): 693–701 (1986).
[2] Stein G.E., Goldstein E.J., Fluoroquinolones and Anaerobes, Clin. Infect. Dis., 42(11): 1598–1607 (2006).
[3] Chen Y.L., Fang K.C., Sheu J.Y., Hsu S.L., Tzeng C.C., Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives, J. Med. Chem., 44(14): 2374–2377 (2001).
[4] Fujimaki K., Noumi T., Saikawa I., Inoue M., Mitsuhashi S., In Vitro and in Vivo Antibacterial Activities of T-3262, A New Fluoroquinolone, Antimicrob. Agents Chemother., 32(6): 827–833 (1988).
[6] O'Donnell J.A., Gelone S.P., Fluoroquinolones, Infect. Dis. Clin. North Am., 14(2): 489–513 (2000).
[7] Zhanel G.G., Walkty A., Vercaigne L., Karlowsky J.A., Embil J., Gin A.S., Hoban D.J., The New Fluoroquinolones: A Critical Review, Can. J. Infect. Dis. Med. Microbiol., 10(3): 207–238 (1999).
[8] Llorente B., Leclerc F., Cedergren R., Using SAR and QSAR Analysis to Model the Activity and Structure of the Quinolone—DNA Complex, Bioorg. Med. Chem., 4(1): 61–71 (1996).
[9] Wentland M.P., Lesher G.Y., Reuman M., Gruett M.D., Singh B., Aldous S.C., Dorff P.H., Rake J.B., Coughlin S.A., Mammalian Topoisomerase II Inhibitory Activity of 1-cyclopropyl-6, 8-difluoro-1, 4-dihydro-7-(2, 6-dimethyl-4-pyridinyl)-4-oxo-3-Quinolinecarboxylic Acid and Related Derivatives, J. Med. Chem., 36(19): 2801–2809 (1993).
[11] Oh Y.S., Lee C.W., Chung Y.H., Yoon S.J., Cho S.H., Syntheses of New Pyridonecarboxylic Acid Derivatives Containing 3‐, 5‐or 6‐quinolyl Substituents at N‐1 and Their Anti‐HIV‐RT Activities, J. Heterocycl. Chem., 35(3): 541–550 (1998).
[12] Karlowsky J.A., Adam H.J., Desjardins M., Lagacé-Wiens P.R., Hoban D.J., Zhanel G.G., Baxter M.R., Nichol K.A., Walkty A., Canadian Antimicrobial Resistance Alliance (CARA, 2013. Changes in Fluoroquinolone Resistance over 5 Years (CANWARD 2007–11) in Bacterial Pathogens Isolated in Canadian Hospitals, J. Antimicrob. Chemother., 68: i39–i46 (2013).
[13] Gootz T.D., Brighty K.E., Fluoroquinolone Antibacterials: SAR, Mechanism of Action, Resistance, and Clinical Aspects, Med. Res. Rev., 16(5): 433–486 (1996).
[14] Aubry A., Pan X.S., Fisher L.M., Jarlier V., Cambau E., Mycobacterium Tuberculosis DNA Gyrase: Interaction with Quinolones and Correlation with Antimycobacterial Drug Activity, Antimicrob. Agents Chemother., 48(4): 1281–1288 (2004).
[15] Mitscher L.A., Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents, Chem. Rev., 105(2): 559–592 (2005).
[16] Sriram D., Aubry A., Yogeeswari P., Fisher L.M., Gatifloxacin Derivatives: Synthesis, Antimycobacterial Activities, and Inhibition of Mycobacterium Tuberculosis DNA Gyrase, Bioorg. Med. Chem. Lett., 16(11): 2982–2985 (2006).
[17] Dubar F., Anquetin G., Pradines B., Dive D., Khalife J., Biot C., Enhancement of the Antimalarial Activity of Ciprofloxacin Using a Double Prodrug/Bioorganometallic Approach, J. Med. Chem., 52(24): 7954–7957 (2009).
[18] Shindikar A.V., Viswanathan C.L., Novel Fluoroquinolones: Design, Synthesis, and in Vivo Activity in Mice Against Mycobacterium Tuberculosis H 37 Rv, Bioorg. Med. Chem. Lett., 15(7): 1803–1806 (2005).
[19] Reddy P.G., Baskaran S., Microwave Assisted Amination of Quinolone Carboxylic Acids: an Expeditious Synthesis of Fluoroquinolone Antibacterials, Tetrahedron Lett., 42(38): 6775–6777 (2001).
[20] Kawakami K., Namba K., Tanaka M., Matsuhashi N., Sato K., Takemura M., Antimycobacterial Activities of Novel Levofloxacin Analogues, Antimicrob. Agents Chemother., 44(8): 2126–2129 (2000).
[21] Fisher L.M., Lawrence J.M., Josty I.C., Hopewell R., Margerrison E.E., Cullen M.E., Ciprofloxacin and the Fluoroquinolones: New Concepts on the Mechanism of Action and Resistance, Am. J. Med., 87(5): S2-S8 (1989).
[22] Grohe K., Heitzer H., Cycloaracylation of Enamines. 1. Synthesis of 4-quinolone-3-carboxylic Acids, Liebigs Ann. Chem., 1: 29–37 (1987).
[23] Petersen U., Grohe K., Kuck K.H., Microbicidal Agents Based on Quinolonecarboxylic Acid, U.S. Patent: 4563459 (1986).
[24] Petersen U., Schrock W., Habich D., Krebs A., Schenke T., Philipps T., Grohe K., Endermann R., Bremm K.D., Metzger K.G., Quinolonecarboxylic Acids, U.S. Patent: 5480879 (1996).
[25] Lee T.A., Khoo J.H., Song S.H., Process for Preparing Levofloxacin or Its Hydrate, Patent: WO2006009374 (2006).
[26] Hayakawa I., Atarashi S., Imamura M., Yokohama S., Higashihashi N., Sakano K., Ohshima M., Optically Active Pyridobenzoxazine Derivatives and Intermediates Thereof, U.S. Patent: 4985557 (1991).
[27] Hayakawa I., Hiramitsu T., Tanaka Y., Synthesis and Antibacterial Activities of Substituted 7-oxo-2, 3-dihydro-7H-pyrido [1, 2, 3-de][1, 4] Benzoxazine-6-carboxylic Acids, Chem. Pharm. Bull., 32(12): 4907–4913 (1984).
[28] “Global and Alliance for TB Drug Development Handbook of Anti-Tuberculosis Agents”, "Moxifloxacin". Tuberculosis, 88(2): 127–131(2008).
[30] Mohammadi Ziaran, G., Badiei A.R., Khaniania Y., Haddadpour M., One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 29(2): 1–10 (2010).
[31] Davoodnia A., Yadegarian S., Nakhaei A., Tavakoli-Hoseini N., A Comparative Study of TiO2, Al2O3, and Fe3O4 Nanoparticles as Reusable Heterogeneous Catalysts in the Synthesis of Tetrahydrobenzo[a]xanthene-11-ones, Russ. J. Gen. Chem., 86(12): 2849–2854 (2016).
[33] Hasaninejad A., Zare A., Zolfigol M.A., Abdeshah M., Ghaderi A., Nami-Ana F., Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation Reaction Using Silica-Supported P2O5 under Solvent-Free Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 73–81 (2011).
[34] Keshwal B.S., Rajguru D., Acharya A.D., DBU as a Novel and Highly Efficient Catalyst for the Synthesis of 3, 5-Disubstituted-2, 6-dicyanoanilines Under Conventional and Microwave Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 35(1): 37–42 (2016).
[35] Sheikhhosseini E., Sattaei Mokhtari T., Faryabi M., Rafiepour A., Soltaninejad S., Iron Ore Pellet, A Natural and Reusable Catalyst for Synthesis of Pyrano [2, 3-d] pyrimidine and Dihydropyrano [c] chromene Derivatives in Aqueous Media, Iran. J. Chem. Chem. Eng. (IJCCE), 5(1): 43–50 (2016).
[36] Gohani, M., H van Tonder, J., CB Benzuidenhoudt, B., NaHSO4-SiO2: An Efficient Reusable Green Catalyst for Selective C-3 Propargylation of Indoles with Tertiary Propargylic Alcohols, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 11–17 (2015).
[38] Mohammadi Ziarani G., Mousavi S., Lashgari N., Badiei A., Shakiba M., Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-Pot Synthesis of Polyhydroacridine Libraries, Iran. J. Chem. Chem. Eng. (IJCCE), 32(4): 9–16 (2013).
[39] Chunhua X., Caiping Y., Adsorption Behavior of Cu(II) in Aqueous Solutions by SQD-85 Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 32(2): 57–66 (2013).
[40] Nakhaei A., Hosseininasab N., Yadegarian S., Synthesis of 1, 4-Dihydropyridine Derivatives Using Nano-Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst, Heterocycl. Lett., 7(1): 81–90 (2017).
 [41] Mohanazadeh F., Rahimi S., HNO3/N, N-Diethylethanaminium-2-(Sulfooxy) Ethyl Sulfate as an Efficient System for the Regioselective of Aromatic Compounds, Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 73–77 (2011).
[43] Mohammadi Ziarani, G., Badiei, A., Azizi, M., Zarabadi, P., Synthesis of 3, 4-dihydropyrano [c] Chromene Derivatives Using Sulfonic Aacid Functionalized Silica (SiO2PrSO3H), Iran. J. Chem. Chem. Eng. (IJCCE), 30(2): 59–65 (2011).
[44] Salamatinia B., Hashemizadeh I., Ahmad Zuhairi A., Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology, Iran. J. Chem. Chem. Eng., 32(1): 113–126 (2013).
[45] Feyzi M., Mirzaei A.A., Preparation and Characterization of CoMn/TiO2 Catalysts for Production of Light Olefins, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 17–28 (2011).
[46] Fazeli A., Khodadadi A.A., Mortazavi Y., Manafi H., Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 32(3): 45–59 (2013).
[47] Sayama K., Arakawa H., Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 Catalyst, J. Phys. Chem., 97(3): 531–533 (1993).
[52] Davoodnia A., Nakhaei A., Fast and Solvent-Free Synthesis of Polyhydroquinolines Catalyzed by a Keplerate Type Giant Nanoporous Isopolyoxomolybdate as a Reusable Catalyst, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 46(7): 1073-1080 (2016).
[57] Kolvari E., Koukabi N., Hosseini M.M., Vahidian M., Ghobadi E., Nano-ZrO 2 Sulfuric Acid: A Heterogeneous Solid Acid Nano Catalyst for Biginelli Reaction under Solvent Free Conditions, RSC Advances, 6(9): 7419-7425 (2016).