Effects of Thymolphthalein on Thermo-Oxidative Stability of High Density Polyethylene in Melt and Solid States

Document Type : Research Article


Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN


The present work aimed to evaluate capability of a new molecular structure to stabilize polyethylene against thermal oxidation. Hence, effects of 3,3-bis(4-hydroxy-2-methyl-5-propan-2-ylphenyl)-2-benzofuran-1-one (thymolphthalein) on thermo-oxidative stability of high density polyethylene (HDPE) in both solid and melt states were investigated and compared with those of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. Oven ageing experiments at 90 °C followed by Fourier Transform Infrared (FT-IR) spectroscopy showed that thymolphthalein at concentrations of 0.1-1.0 wt% improves thermo-oxidative stability of the polymer strongly in the solid state so that its stabilization efficiency is comparable to that of SONGNOX 1010. Furthermore, measurements of Oxidation Onset Temperature (OOT) and Oxidative Induction Time (OIT) of the polymer samples revealed that thymolphthalein modifies thermo-oxidative stability of the polymer in the melt state remarkably. So that, an increase in OOT value of the polymer as large as 36C was obtained by addition of 0.1 wt% of thymolphthalein.It was also confirmed that thymolphthalein does not interfere with the stabilization action of the phenolicantioxidant in the polymer neither in melt nor in solid state. Finally, a mechanism for the stabilization action of thymolphthalein in the polymer was proposed.


Main Subjects

[1] Colin X., Fayolle B., Audouin L., Verdu J., About a Quasi Universal Character of Unstabilised Polyethylene Thermal Oxidation Kinetics, Polym. Degrad. Stab., 80: 67-74 (2003).
[2] Goldberg V.M., Kolesnikova N.N., Paverman N.G., Kavun S.M., Stott P.E., Gelbin M.E., Thermo-Oxidative Degradation of Linear Low Density Polyethylene in the Presence of Carbon Black: A Kinetic Approach, Polym. Degrad. Stab., 74: 371-385 (2001).
[3] Rosales-Jasso A., Allen N.S., Sasaki M., Evaluation of Novel 4,4-dimethyloxazolidine Derivatives as Thermal and UV Stabilisers in Linear Low Density Polyethylene (LLDPE) Film, Polym. Degrad. Stab., 64: 277-287 (1999).
[8] Albertsson A.-C., Karlsson S.J., The Three Stages in Degradation of Polymers-Polyethylene as a Model Substance, Appl. Polym. Sci.,35: 1289-1302 (1998). 
[9] Lacoste L., Carlsson D.J., Gamma-, Photo-, and Thermally-Initiated Oxidation of Linear Low Density Polyethylene- a Quantitative Comparison of Oxidation Products, J. Polym. Sci. Part A Polym. Chem., 30: 493-500 (1992).
[10] Luzuriaga S., Kovarova J., Fortelny I., Degradation of Pre-aged Polymers Exposed to Simulated Recycling: Properties and Thermal Stability, Polym. Degrad. Stab., 91: 1226-1232 (2006).
[11] Allen N.S., Edge M., “Fundamentals of Polymer Degradation and Stabilization”, Elsevier, London (1992).
[12] Gugumus F, Stabilization of Plastics Against Thermal Oxidation in: “Oxidation Ihibition in Organic Materials“, Pospisil J., Klemchuk P.P. (Ed.), CRC Press, Bocca Raton, Vol. I, 61-172 (1990).
[13] Schwetlick K., Pionteck J.,  Konig T., Habicher W.D., Organophosphorus Antioxidants—VІІІ. Kinetics and Mechanism of the Reaction of Organic Phosphites with Peroxyl Radicals, Eur. Polym. J., 23: 383-388 (1987).
[14] Gugumus F, Polyolefin Stabilization: from Single Stabilizers to Complex Systems in:“Handbook of Polymer Degradation”, Ed. By Hamid S. H., Taylor & Francis, New York, 1-38 (2000).
[15] Scott G., “Atmospheric Oxidation and Antioxidants”, Elsevier, London (1993).
[16] Taherkhani M., Chemical Investigation and Protective Effects of Bioactive Phytochemicals from Artemisia Ciniformis, Iran. J. Chem. Chem. Eng. (IJCCE),35: 15-26 (2016).
[17] Mammadov R., Ili P.; Vaizogullar H.E., Makascı A.A., Antioxidant Activity and Total Phenolic Content of Gagea fibrosa and Romulea ramiflora, Iran. J. Chem. Chem. Eng. (IJCCE), 30: 57-62 (2011).
[18] Voigt W., Todesco R., New Approaches to the Melt Stabilization of Polyolefins, Polym. Degrad. Stab., 77: 397-402 (2002).
[19] Mar’in A., Greci L., Dubs P., Antioxidative Activity of 3-aryl-benzofuran-2-one Stabilizers (Irganox1HP-136) in Polypropylene, Polym. Degrad. Stab., 76: 489-494 (2002).
[20] Bergenudd H., Eriksson P., DeArmitt C., Stenberg B., Jonsson E.M., Synthesis and Evaluation of Hyperbranched Phenolic Antioxidants of Three Different Generations, Polym. Degrad. Stab., 76: 503-509 (2002).
[21] Kim T.H., Oh D.R., Melt Grafting of Maleimides Having Hindered Phenol Antioxidant Onto Low Molecular Weight Polyethylene, Polym. Degrad. Stab., 84, 499-503 (2004).
[22] Shi X., Wang J., Jiang B., Yang Y., Hindered Phenol Grafted Carbon Nanotubes for Enhanced Thermal Oxidative Stability of Polyethylene, Polymer, 54: 1167-1176 (2013).
[23] Jahanmardi R., Assempour H., Effects of Galbanic Acid on Thermal and Thermo-oxidative Stabilities of LLDPE, Iran. Polym. J. 17: 799-806 (2008).
[24] Sabnis R.W., “Handbook of Acid-Base Indicators”,CRC Press, Boca Raton (2007).
[25] Pospisil J., Mechanistic Action of Phenolic Antioxidants in Polymers–A Review, Polym. Degrad. Stab., 20: 181-202 (1988).
[26] Schnabel W., “Polymer Degradation: Principles and Practical Applications”,Hanser, Munich (1981).
[27] Acar R., Özcan M. M., Kanbur G., Dursun N., Some Physico-Chemical Properties of Edible and Forage Watermelon Seedsm, Iran. J. Chem. Chem. Eng. (IJCCE), 31: 41-47 (2012).
[28] Wang Z., Chen T., Xu J., Cardo Polyarylethersulfones and Polyaryletherketones Bearing Alkyl Substituents on the Phenylene Unit, J. Macromol. Sci. Pure, 37: 1571-1586 (2000).
[29] Abbehausen C., Formiga A.L.B., Sabadini E., Yoshida I.V.P., A β-Cyclodextrin/Siloxane Hybrid Polymer: Synthesis, Characterization and Inclusion Complexes, J. Braz. Chem. Soc., 21: 1867-1876 (2010).
[30] Chemistry education (2010) University of Bayreuth, Germany. Accessed 21 May 2015
[32] Hoang E.M., Allen N.S., Liauw C.M., Fontan E., Lafuente P., The Thermo-Oxidative Degradation of Metallocene Polyethylenes: Part 1: Long-Term Thermal Oxidation in the Solid State, Polym. Degrad. Stab., 91: 1356-1362 (2006).
 [33] Zeynalov E.B., Allen N.S., Modelling Light Stabilizers as Thermal Antioxidants, Polym. Degrad. Stab., 91: 3390-3396 (2006).
[34] Rodriguez-Vazquez M., Liauw C.M., Allen N.S., Edge M., Fontan E., Degradation and stabilisation of poly(ethylene-stat-vinyl acetate): 1- Spectroscopic and Rheological Examination of Thermal and Thermo-Oxidative Degradation Mechanisms, Polym. Degrad. Stab., 91: 154-164 (2006).
[35] Javadi Y., Salami Hosseini M., Razavi Aghjeh M.K., The Effect of Carbon Black and HALS Hybrid Systems on the UV Stability of High-Density Polyethylene (HDPE), Iran. Polym. J. 23: 793-799 (2014).
[36] Jakubowicz I., Yarahmadi N., Petersen H., Evaluation of the Rate of Abiotic Degradation of Biodegradable Polyethylene in Various Environments, Polym. Degrad. Stab., 91: 1556-1562 (2006).
[37] Liu G., Grafting Copolymerization of Cationic Vinyl Monomer with Quaternary Ammonium Groups onto Polypropylene, Iran. J. Chem. Chem. Eng. (IJCCE), 34: 17-23 (2015).