Peroxynitric Acid: A Convenient Oxygen Source for Oxidation of Organic Compounds Catalyzed by Polyimide-Supported Manganese (III) Tetrakis(4-methoxylphenyl)porphyrin Acetate

Document Type : Research Article


1 Department of Chemistry, Faculty of Sciences, Yasouj University, P.O. box 75918-74831Yasouj, IRAN

2 Department of Chemistry, Yasouj University, P.O. Box 75918-74831, I.R. IRAN


In this work, a polyimide (PI) containing triazole units was synthesized using 3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer was used as the support of manganese (III) tetrakis(4-methoxylphenyl)porphyrin acetate to attain a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn(T4-OMePP)OAc@PI were characterized by different spectroscopic and analytical techniques. The resulted catalyst was applied for epoxidation of alkenes and dehydrogenation of Hantzsch 1,4-dihydropyridines (1,4-DHP) by peroxynitric acid (PNA; HOONO2) as a convenient new oxygen source. In association with HOONO2, Mn(T4-OMePP)OAc@PI was stable and proved to be an efficient, reusable and selective catalyst for epoxidation of alkenes (36-96% yield) and dehydrogenation of Hantzsch 1,4-DHP’s ( 94-100% yield).


Main Subjects

[1] Saeedi M.S., Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I., Khosropour A.R., Magnetic nanoparticles Supported Manganese(III) Tetrapyridylporphyrin Catalyst via Covalent interaction: A Highly Efficient and Reusable Catalyst for the Oxidation of Hydrocarbons, Polyhedron, 49: 158-166 (2013).
[2] Ferreira G.K.B., de Freitas Castroa K.A.D., Machadoa G.S., Ribeirob R.R., Ciuffi K.J., Riccic G.P., Marquesd J.A., Nakagakia S., Manganese Porphyrin in Solution and Heterogenized in Different Materials Mediates Oxidation of Hydrocarbons by Iodosylbenzene, J. Mol. Catal. A: Chem., 378: 263-272 (2013).
[4] Costas M., Selective C–H Oxidation Catalyzed by Metalloporphyrins, Coord. Chem. Rev., 255:2912 (2011).
[5] Zadehahmadi F., Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I., Khosropour A.R., Kardanpour R., Synthesis and Characterization of Mangenese(III) Porphyrin Supported on Imidazole Modified Chloromethylated MIL-101(Cr): A Heterogeneous and Reusable Catalyst for Oxidation of Hydrocarbons with Sodium Periodate, J. Solid State. Chem., 218: 56-63 (2014).
[7] Trost B.M., Braslau R., Tetra-n-butylammonium Oxone. Oxidations Under Anhydrous Conditions, J. Org. Chem., 53: 532-537 (1988).
[10] P.R. Ortiz de Montellano, ʺCytochrome P450: Structure, Mechanism, and Biochemistryʺ, 3rd ed.; Kluwer Academic/Plenum Publishers: New-York, (2005).
[11] Kadish K.M., Smith K.M., Guilard R., “The Porphyrin Handbook: Biochemistry and Binding: Activation of Small Molecules”, Academic Press, (2000).
[12] Nam W., Han H.J., Oh S.Y., Lee Y.J., Choi M.H., Han S.Y., Kim C., Woo S.K., Shin W., New Insights into the Mechanisms of O−O Bond Cleavage of Hydrogen Peroxide and tert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes, J. Am. Chem. Soc., 122: 8677-8684 (2000).
[13] Song W.J., Seo M.S., George S.D., Ohta T., Song R., Kang M.J., Tosha T., Kitagawa T., Solomon E.I., Nam W., Synthesis, Characterization, and Reactivities of Manganese(V)−Oxo Porphyrin Complexes, J. Am. Chem. Soc., 129: 1268-1277 (2007).
[15] Regimbal J.M., Mozurkewich M., Peroxynitric Acid Decay Mechanisms and Kinetics at Low pH, J. Phys. Chem. A. 101: 8822-8829 (1997).
[16] Goldstein S., Lind J., Merenyi G., Chemistry of Peroxynitrites as Compared to Peroxynitrates, Chem. Rev., 105: 2457-2570 (2005).
[17] Zolfigol M.A., Safaiee M., Synthesis of 1,4-Dihydropyridines under Solvent-free Condition, Synlett., 827-828 (2004).
[18] Adler A.D., Longo F.R., Finarelli J.D., Goldmacher J., Assour J., Korsakoff L., A Simplified Synthesis for Meso-tetraphenylporphine, J. Org. Chem., 32: 476-476 (1967).
[19] Adler A.D., Longo F.R., Kampas F., Kim J., On the Preparation of Metalloporphyrins, J. Inorg. Nucl. Chem., 32: 2443-2445 (1970).
[20] E. H. Appelman, D. Gosztola, Aqueous Peroxynitric Acid (HOONO2): A Novel Synthesis and Some Chemical and Spectroscopic Properties, J. Inorg. Chem., 34: 787-791(1995).
[21] Rafiee Z., Golriz L., Synthesis and Properties of Thermally Stable Polyimides Bearing Pendent Fluorene Moieties, Poly. Adv. Technol., 25: 1523-1529 (2014).
[22] Karimipour G., Nasr-Esfahani M., Valipour G.,Catalytic Oxidation of 1,4-dihydropyridins by Tetrabutylammonium Periodate in the Presence of Manganese Amino Acid Schiff Base, J. Chem. Res.,2007: 415417 (2007).
[23] Radhakrishnan Nair M.N., Thomas G.V., Gopinathan Nair M.R., Thermogravimetric Analysis of PVC/ELNR Blends, Polym. Degrad. Stab., 92: 189 (2007).
[24] Abu-Eittah R.H., ZaKi N.G., Mohamed M.M.A., Kamel L.T., Kinetics and Thermodynamic Parameters of the Thermal Decomposition ofbis(imipraminium) tetrachlorocuprate, bis(imipraminium)tetrachloromercurate and imipraminium reineckate, J. Anal. Appl. Pyrolysis., 77: 1-11 (2006).
[25] Fujita I., Hanson L.K., Walker F.A., Fajer J., Models for Compounds I of Peroxidases: Axial Ligand Effects, J. Am. Chem. Soc., 105: 3296-3300 (1983).
[26] Hirst J., Wilcox S.K., Williams P.A., Blankenship J., McRee D.E., Goodin D.B., Replacement of the Axial Histidine Ligand with Imidazole in Cytochrome c Peroxidase. 1. Effects on Structure, Biochemistry, 40: 1265-1273 (2001).
[27] Hatano K., Safo M.K., Walker F.A., Scheidt W.R., Models of Cytochromes b. Attempts to Control axial Ligand Orientation with a "Hindered" Porphyrin System, Inorg. Chem., 30: 1643-1650 (1991).
[29] Kobayashi K., Yoshioka S., Kato Y., Asano Y., Aono S., Regulation of Aldoxime Dehydratase Activity by Redox-dependent Change in the Coordination Structure of the Aldoxime-Heme Complex, J. Biol. Chem., 280: 5486-5490 (2005).
[30] Hart-Davis J., Battioni P., Boucher J.L., Mansuy D., New Catalytic Properties of Iron Porphyrins: Model Systems for Cytochrome P450-Catalyzed Dehydration of Aldoximes., J. Am. Chem. Soc., 120: 12524-1250 (1998).
[31] Bernhardt R., Cytochromes P450 as Versatile Biocatalysts, J. Biotechnol., 124: 128-145 (2006).
[32] Cojocaro V., Winn P.J., Wade R.C., The Ins and Outs of Cytochrome P450s, Biochem. Biophys. Acta., 1770: 390-401 (2007).
[33] Gunter M.J., Turner P., The role of the Axial Ligand in meso-tetraarylmetalloporphyrin Models of the P-450 Cytochromes, J. Mol. Catal., 66: 121-141 (1991).
[34] Jorgensen K.A., Dolphin D.A., Sheldon (Ed.) R.A., ʺMetalloporphyrins in Catalytic Oxidationsʺ, Marcel Dekker, New-York, (1994).
[35] Nakamoto K., Structure, Spectra and Biological Significance of High-Valent iron(IV,V) Porphyrins, J. Mol. Struct., 408: 11-16 (1997).
[36] Huang C.Y., Yeh W.L., Cheng S.H., Spectral and Electrochemical Studies of Axial Ligand Binding Reactions of Carbonylruthenium(II) meso-tetramesitylporphyrin, J. Electroanal. Chem., 577: 179-186 (2005).
[37] d’Ans J., Friederich W., Über Derivate des Hydroperoxyds, Zeitschrift für anorganische und allgemeine Chemie, 73: 325-359 (1912).
[38] Schwarz R., Uber Die Peroxysalpetersäure, Zeitschrift für Anorganische und Allgemeine Chemie, 256: 3-9 (1948).
[39] Niki H., Maker P.D., Savage C.M., Breitenback L.P., Fourier transform IR Spectroscopic Observation of Pernitric Acid Formed via HOO + NO2 → HOONO2, Chem. Phys. Lett., 45: 564-566 (1977).
[40] Logager T., Sehested K., Formation and Decay of Peroxynitric Acid: A Pulse Radiolysis Study, J. Phys. Chem., 97: 10047-10052 (1993).
[41] Kenley R.A., Trevor P L., Lan B.Y., Preparation and Thermal Decomposition of Pernitric Acid (HOONO2) in Aqueous Media, J. Am. Chem. Soc.,103: 2203-2206(1981).
[42]Lehnig M., Kirsch M., Korth H.G., Study of Formation and Decay of Peroxynitric Acid: Evidence for Formation of Hydroxyl Radicals, Inorg. Chem., 42: 4275-4287 (2003).
[43] Turnover Numbers Were Determined with High Molar Ratio of the Substrate and Oxidant.  For Estimation
of Turnover Number for Mn(T4-OMePP)OAc the Components Are: Mn(T4-OMePP)OAc (4.5×10-4 mmol), Imidazole (4.5×10-3), TBABr (9×10-3 mmol) Styrene (0.158 mmol) and HOONO2 (1.7 M, 94 μL) in which the Molar Ratio was 1:10:20:351:355, Respectively and for Mn(T4-OMePP)OAc@PI the Molar Ratio of the Catalyst, TBABr, Styrene, and HOONO2 Was Also 1:20:351:355, Correspondingly.
[44] Triggle D.J, “In Comprehensive Medicinal Chemistry”; Emmett, J. C., Volume Editor; Pergamon: Oxford (1990).
[45] Yamamoto T., Niwa S., Ohno S., Onishi T., Matsueda H., Koganei H., Uneyama H., Fujita S., Takeda T., Kito M., Ono Y., Saitou Y., Takahara A., Iwata S., Shoji M., Structure–Activity Relationship Study of 1,4-dihydropyridine Derivatives Blocking N-Type Calcium Channels, Bioorg. Med. Chem. Lett., 16: 798-802 (2006).
[46] Guengerich F.P., Martin M.V., Beaune P.H., Kremers P., Wolff T., Waxman D.J., Characterization of Rat and Human Liver Microsomal Cytochrome P-450 Forms Involved in Nifedipine Oxidation, A Prototype for Genetic Polymorphism in Oxidative Drug Metabolism, J. Biol. Chem., 261: 5051-5060 (1986).
[47] Guengerich F.P., Brian W.R., Iwasaki M., Sari M.A., Bäärnhielm C., Berntsson P., Oxidation of Dihydropyridine Calcium Channel Blockers and Analogs by Human Liver Cytochrome P-450 IIIA4, J. Med. Chem., 34: 1838-1844 (1991).