Kinetic Study of Reaction between Allyl Compounds of Mg and Ethylene: Computational Investigation

Document Type : Research Article

Authors

1 Department of Chemistry Faculty of Science, East Tehran Branch, Islamic Azad University, P.O Bax 33955-163 Tehran, I.R. IRAN

2 Department of Organic Chemistry, Razi University, P.O. Box 67149-67346 Kermanshah, I.R. IRAN

Abstract

The reactions of propenyl magnesium halides with ethylene were studied using ab initio calculations. The structure of the transition state and the ground state were evaluated and obtained the structural properties, theoretical thermodynamic and kinetic data i.e. rate constants of the reactions. The methods used for calculations are RHF, B3LYP and MP2 with 6-31G* basis set. The comparison of the thermodynamic and kinetic data of the reactions showed that the chemical affinity of reactants increases by increasing the bond length of  Mg-X in three methods. Also the results showed reactions would accelerate as increasing size of the halogen, by lowering or raising the HOMO or LUMO energies and decreasing the HOMO-LUMO energy gap.

Keywords

Main Subjects


[1] Oppolzer W., Pitteloud R., Strauss H.F.,  Intramolecular Type-II "Metallo-ene" Reactions of (2-alkenylallyl) Magnesium Chlorides :Regio -and Stereo Chemicalstudies, J. Am. Chem. Soc., 104: 6476-6477 (1982).
[4] Yamada T., Udagawaa T., Sakai Sh., Driving Force of Metallo (Mg–H and Mg–Cl)-ene Reaction Mechanisms, Phys. Chem. Chem. Phys, 12: 3799-3805 ( 2010).
[5] Lemkuhl H., “Proceedings of the First Symposium on Organic Synthesis via Organometallics” Hamburg/FRG, 185, (1987). (and the literature cited there in). 
[7] Houk K.N., Gonzalez J., Li Y., Pericyclic Reaction Transition States: Passions and Punctilios, (1935-1995) Acc. Chem. Res., 28: 81-90 (1995). (and the literature cited there in).
[8] Lemkuhl H., Hauschild K., Bellenbaum, Addition von Organo Magnesium Halogeniden an C=C-Bindungen, XVII. Reaktionen von Organo Magnesium Halogeniden Mit (Trimethylsilyl) Ethylen M., Chem. Ber., 117: 383-388 (1984). (and the literature cited there in).
[10] Gaussian 03, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery Jr., J.A., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowsk, J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S., Pople J.A., Gaussian Inc., Pittsburgh PA, (2003).
[11] McQuarrie D.A., Simon J.D., “Molecular Thermodynamics Physical Chemistry”, University Science Books, Sausalito, CA, (1999).