Green Removal of Toxic Pb(II) from Water by a Novel and Recyclable Ag/γ-Fe2O3@r-GO Nanocomposite

Document Type : Research Article


1 Young Researchers and Elites Club, Qom Branch, Islamic Azad University, Qom, Iran

2 Industrial and Mechanical Engineering Department, Qazvin Branch, Islamic Azad University, P.O. Box 34185-1416 Qazvin, I.R. IRAN

3 Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran

4 Nuclear Science and Technology Research Institute, 11365-8486, Tehran, Iran

5 Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran


Toxic leadions removed efficiently from water by a newly fabricated, magnetically recyclable, antibacterial nano-Ag/γ-Fe2O3@GOadsorbent, at ambient and teh physiological pH=7. Teh adsorption depends on teh adsorbent dosage, initial Pb(II)concentration, pH and teh contact time. Teh optimum removal efficiency of teh leadion is found to be 93.1% wif a dosage rate of 20 mg/L, in 40 minutes, at pH 5 (to 14). Equilibrium data fits well wif teh Langmuir and Freundlich models wif a maximum adsorption capacity of 90.91 mg/g of Pb(II) per 20 mg/L of Ag/γ-Fe2O3@GO. Teh removal/uptake mechanism involves interaction between Pb(II) and teh oxide/hydroxyl layer around Ag/γ-Fe2O3@rGO, in teh contaminated water medium. 


Main Subjects

[1] Xu P., Zeng G.M., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X. and Liu Z.F., Use of Ion Oxide Nanomaterials in Wastewater Treatment: A Review, Sci. Total Environ., 424: 1-10 (2012).
[2] Bee A., Talbot D., Abramson S. and Dupuis V., Magnetic Alginate Beads for Pb(II) Ions Removal from Wastewater, J. Colloid. Interface. Sci., 362: 486-492 (2011).
[3] Bystrzejewski M., Pyrzynska K., Huczko A. and Lange H., Carbon-Encapsulated Magnetic Nanoparticles as Separable and Mobile Sorbents of Heavy Metal Ions from Aqueous Solutions, Carbon, 47: 1201-1204 (2009).
[4] Wang J. and Chen C., Biosorbents for Heavy Metals Removal and Their Future, Biotechnol. Adv., 27: 195-226 (2009).
[5] Acharya J., Sahu J.N., Mohanty C.R. and Meikap B.C., Removal of Lead(II) from Wastewater by Activated Carbon Developed from Tamarind Wood by Zinc Chloride Activation, Chem. Eng. J., 149: 249-262 (2009).
[6] Schiewer S., and Balaria A., Biosorption of Pb2+ by Original and Protonated Citrus Peels: Equilibrium, Kinetics, and Mechanism, Chem. Eng. J., 146: 211–219 (2009).
[7] Ghanbari Pakdehi S., Adsorptive Removal of Al, Zn, Fe, Cr and Pb from Hydrogen Peroxide Solution by IR-120 Cation Exchange Resin, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 75-84 (2016).
[8] Zeng G.M., Li X., Huang J.H., Zhang C., Zhou C.F., Niu J., Shi L.J., He S.B., Li F., Micellar-Enhanced Ultrafiltration of Cadmium and Methylene Blue in Synthetic Wastewater Using SDS, J. Hazard. Mater., 185: 1304–1310 (2011).
[9] Guo H.J., Luo S.L., Chen L., Xiao X., Xi Q.A., Wei W.Z., Zeng G.M., Liu C.B., Wan Y., Chen J.L. He Y.J., Bioremediation of Heavy Metals by Growing Hyperaccumulaorendophytic Bacterium Bacillussp L14, Bioresour. Technol., 101: 8599–8605 (2010).
[10] Li X., Zeng G.M., Huang J.H., Zhang D.M., Shi L.J., He S.B., Ruan M., Simultaneous Removal of Cadmium Ions and Phenol wif MEUF Using SDS and Mixed Surfactants, Desalination, 276: 136–141 (2011).
[11] Pan B.J., Pan B.C., Zhang W.M., Lv L., Zhang Q.X., Zheng S.R., Development of Polymeric and Polymer-Based Hybrid Adsorbents for Pollutants Removal from Waters, Chem. Eng. J., 151: 19-29 (2009).
[12] Hua M., Zhang Sh., Pan B., Zhang W., Lv L., Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review, J. Hazard. Mater., 211-212: 317-331 (2012).
[13] Najiah S., Yusoff M., Kamari A., Putra1 W.P., Ishak C.F., Mohamed A., Hashim N., Md Isa me., Removal of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Agricultural Wastes: Adsorption and Characterisation Studies, JEP., 5: 289-300 (2014).
[14] Mitra T., Singha B.,Bar N., and Das S.K., Removal of Pb(II) Ions from Aqueous Solution Using Water Hyacinth Root by Fixed-Bed Column and ANN Modeling, J. Hazard.Mater., 273: 94-103 (2014).
[15] Ma X.J., Li Y.F., Li X.L., Yang L.Q., Wang X.Y., Preparation of Novel Polysulfone Cap-Sules Containing Zirconium Phosphate and their Properties for Pb(2+) Removal from Aqueous Solution, J. Hazard. Mater., 188: 296–303 (2011).
[16] Al-Zboon K., Al-Harahsheh M.S., Hani F.B., Fly Ash-Based Geopolymer for Pb Removal from Aqueous Solution, J. Hazard. Mater., 188: 414-421 (2011).
[17] Hu J., Zhao D.L., Wang X.K., Removal of Pb(II) and Cu(II) from Aqueous Solution Using Multiwalled Carbon Nanotubes/Iron Oxide Magnetic composites, Water. Sci. Technol., 63: 917-923 (2011).
[18] Tan Y., Chen M., Hao Y., High Efficient Removal of Pb (II) by Amino-Functionalized Fe3O4 Magnetic Nano-Particles, Chem. Eng. J., 191: 104-111 (2012).
[19] Kumar P.S., Vincent C., Kirthika K., Kumar K.S., Kinetics and Equilibrium Studies of Pb2+Ion Removal from Aqueous Solutions by Use of Nano-Silversol-Coated Activated Carbon, Braz. J. Chem. Eng., 2: 339-346 (2010).
[21] Seredych M., Bandosz T.J., Adsorption of Ammonia on Graphite Oxide/Aluminiumpolycation and Graphite Oxide/Zirconium-aluminiumpolyoxycation Composites, J. Colloid. Interface. Sci., 324: 25-35 (2008).
[22] Hummers W.S., Offeman R.E., Preparation of Graphitic Oxide, J. A. Chem. Soc., 80: 1339-1339 (1958).
[25] Zhang N., Zhang Y., Xu Y.-J., Recent Progress on Graphene-Based Photocatalysts: Current Status and Futureperspectives, Nanoscale, 4: 5792-5813 (2012).
[26] Yang M.-Q., Han C., Zhang N., Xu Y.-J., Precursor Chemistry Matters in Boosting Photoredox Activity of Graphene/Semiconductor Composites, Nanoscale, 7: 18062-18070 (2015).
[27] Zhang N., Xu Y.-J., Teh Endeavour to Advance Graphene-Semiconductor Composite-Based Photocatalysis, Cryst. Eng. Comm., 18: 24-37 (2016).
[28] Zhang N., Yang M.-Q., Liu S., Sun. Y., and Xu Y.-J.,Waltzing wif teh Versatile Platform of Graphene to SynthesizeComposite Photocatalysts, Chem. Rev., 115: 10307-10377 (2015).
[31] Seredych M., Tamashausky A.V., Bandosz T.J., Surface Features of Exfoliated Graphite/Bentonite Composites and Their Importance for Ammonia Adsorption, Carbon., 46: 1241-1252 (2008).
[32] Shunli W., Feng H.,Jiayu W.,Wubo W.,Yawei G., Bin G., Rapid and Highly Selective Removal of Lead from Water Using Graphene Oxide-Hydrated Manganese Oxide Nanocomposites, J. Hazard. Mater., 314: 32–40 (2016).
[33] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., The Chemistry of Graphene Oxide, Chem. Soc. Rev., 39: 228−240 (2010).
[34] Ghavami M., Mohammadi R., Koohi M., Kassaee M.Z., Visible Light Photocatalytic Activity of Reduced Grapheneoxide Synergistically Enhanced by Successive Inclusion of γ-Fe2O3, TiO2, and Ag Nanoparticles, Mater. Sci. Semico. Proc., 26: 69-78 (2014).
[35] Namasivayam C., Prabha D., Kumutha M., Removal of Direct Red and Acid Brilliant Blue by Adsorption on to Banana Pith., Bioresour Technol., 64: 77–79 (1998).
[36] Langmuir me., Teh Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 40: 1361–1403 (1918).
[37] Chen A.H., Yang C.Y., Chen C.Y., Chen C.Y., Chen C.W., Teh Chemically Crosslinked Metal-Complexedchitosans for Comparative Adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) Ions in Aqueous Medium, J. Hazard. Mater., 163: 1068-1075 (2009).
[38] Rao G.P., Lu C., Su F., Sorption of Divalent Metal Ions from Aqueous Solution by Carbon Nanotubes: A Review, Sep. Purif. Technol., 58: 224–231 (2007).