Experimental Determination of Continuous Phase Overall Mass Transfer Coefficients Case Study: Kühni Extraction Column

Document Type : Research Article


1 Department of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163 Tehran, I.R. IRAN

2 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486 Tehran, I.R. IRAN


The aim of this study is to explore the capability of subcritical methanol to reduce the acidity of naphthenic acids and to determine reaction kinetics for large-scale reactor design.The experiments were carried out in a 25 mL autoclave reactor (China) at temperatures of 70-120oC, Methanol Partial Pressures (MPPs) of 0.1-1.5 MPa, and reaction times of 0-60 min. The total acid number content of the samples was analyzed using ASTM D 974 techniques. Experimental results reveal that total acid number reduction of naphthenic acids increased with increasing reaction temperature, MPP, and reaction time. Approximately 74.20% total acid number was reduced at a temperature of 120oC, a MPP of 1 MPa, and a reaction time of 60 min. Experimental data revealed that total acid number removal reaction kinetics followed second-order kinetics with an activation energy of 11.27 kcal/mol. Therefore, subcritical methanol is able to reduce the total acid number of naphthenic acids without the addition of any catalyst.


Main Subjects

[1] Kislik V.S., "Solvent Extraction: Classical and Novel Approaches", Elsevier, New York (2012).
[2] Aguailar M., Cortina J.L., "Solvent extraction and liquid membranes", CRC Press, New York (2013).
[3] Jaradat M., Attarakih M., Bart H.J., Population Balance Modeling of Pulsed (Packed and Sieve-Plate) Extraction Columns: Coupled Hydrodynamic and Mass Transfer, Ind. Eng. Chem. Res., 50: 14121-14135 (2011).
[4] Asadollahzadeh M., Torab-Mostaedi M., Shahhosseini Sh., Ghaemi A., Experimental Investigation of Dispersed Phase Holdup and Flooding Characteristics in a Multistage Column Extractor, Chem. Eng. Res. Des., 105: 177-187 (2016).
[6] Asadollahzadeh M., Torab-Mostaedi M., Shahhosseini Sh. Ghaemi A., Holdup, Characteristic Velocity and Slip Velocity between Two Phases in a Multi-Impeller Column for High/Medium/Low Interfacial Tension Systems, Chem. Eng. Process, 100: 65-78 (2016).
[7] Godfrey J.C., Slater M.J., "Liquid-Liquid Extraction Equipment", Wiley, New York (1994).
[8] Thornton J. D., "Science and Practice of Liquid-Liquid Extraction", Oxford University Press, Oxford (1992).
[9] Ghorbanian S.A., Abolghasemi H., Radpour S.R., Modelling of Mean Drop Size in a Extraction Spray Column and Developing a New Model, Iran. J. Chem. Chem. Eng. (IJCCE), 30: 89-96 (2011).
[10] Yuan S., Jin S., Chen Z., Yuan Y., Yin H., An Improved Correlation of the Mean Drop Size in a Modified Scheibel Extraction Column, Chem. Eng. Technol., 37: 2165-2174 (2014).
[11] Ritcey G.M., Ashbrook A.W., "Solvent Extraction: Principles and Applications to Process Metallurgy", Elsevier, New York (1984).
[12] Abolghasemi H., Moosavian M.A., Radpour S.R., The Effects of a Surfactant Concentration on the Mass Transfer in a Mixer-Settler Extractor, Iran. J. Chem. Chem. Eng. (IJCCE), 25: 9-15 (2006).
[13] Li N.N., Ziegler E.N., Effect of Axial Mixing on Mass Transfer in Extraction Columns, Ind. Eng. Chem., 59: 30-36 (1967).
[14] Bart H.G., Drumm C., Attarakih M.M., Process Intensification with Reactive Extraction Columns, Chem. Eng. Process, 47: 57-65 (2008).
[15] Henton J.E., Cavers S.D., Continuous-Phase Axial Dispersion in Liquid–Liquid Spray Towers, Ind. Eng. Chem. Fund., 9: 384-392 (1970).
[16] Geankoplis C.J., Sapp J.B., Arnold F.C., Marroquin G., Axial Dispersion Coefficients of the Continuous Phase in Liquid–Liquid Spray Towers, Ind. Eng. Chem. Fund. , 21: 306-311 (1982).
[17] Nosratinia F., Omidkhah M.R., Bastani D., Saifkordi A.A., Investigation of Mass Transfer Coefficient under Jetting Conditions in a Liquid-Liquid Extraction System, Iran. J. Chem. Chem. Eng. (IJCCE), 29: 1-12 (2010).
[18] Hafez M.M., Baird M.H.I., Nirdosh I., Flooding and Axial Dispersion in Reciprocating Plate Extraction Column, Can. J. Chem. Eng. , 57: 150-158 (1979).
[19] Parthasarathy P., Sriniketan G., Srinivas N.S., Varma Y.B.G., Axial Mixing of Continuous Phase in Reciprocating Plate Columns, Chem. Eng. Sci., 39: 987-995 (1984).
[20] Kumar A., Hartland S., Prediction of Continuous-Phase Axial Mixing Coefficients in Pulsed Perforated-Plate Extraction Columns, Ind. Eng. Chem. Res., 28: 1507-1513 (1989).
[21] Moghadam E.H., Bahmanyar H., Heshmatifar F., Kasaie M., Ziaei-Azad H., The Investigation of Mass Transfer Coefficients in a Pulsed Rgular Packed Column Applying SiO2 Nanoparticles, Sep. Purif. Technol., 176: 15-22 (2017).
[22] Míšek T., Berger R., Schroter J., "Standard Test Systems for Liquid Extraction Studies", EFCE Publ. Ser. (1985).
[24] Skelland A.H.P., "Diffusional Mass Transfer", Wiley, New York (1974).
[25] Lochiel A.C., Calderbank P.H., Mass Transfer in the Continuous Phase Around Axisymmetric Bodies of Revolution, Chem. Eng. Sci., 19: 471-484 (1964).
[26] Brauer H., "Stoffaustausch Einschliesslich Chemischer Reaktionen", Verlag Sauerlander, Aarau, Switzerland (1971).
[27] Clift R., Grace J.R., Weber M.E., "Bubbles, Drops and Particles", Academic Press, New York (1978).
[28] Garner F.H., Foord A., Tayeban M., Mass Transfer From Circulating Drops, J. Appl. Chem., 9: 315-323 (1959).
[29] Weber M.E., Mass TRansfer From Spherical Drops at High Reynolds Numbers, Ind. Eng. Chem. Fundam., 14:  365-366 (1975).
[30] Steiner L., Mass-Transfer Rates From Single Drops and Drop Swarms, Chem. Eng. Sci., 41: 1979-1986 (1986).
[32] Torab-Mostaedi M., Safdari S.J., Moosavian M.A., Maragheh M.G., Mass Transfer Coefficiens in a Hanson Mixer-Settler Extraction Column, Braz. J. Chem.  Eng., 25: 473-481 (2008).
[33] Torab-Mostaedi M., Safdari J., Mass Transfer Coefficients in a Pulsed Packed Extraction Column, Chem. Eng. Process, 48: 1321-1326 (2009).
[34] Torab-Mostaedi M., Jalilvand H., Outokesh M., Dispersed Phase Holdup in a Pulsed Disc and Doughnut Extraction Column, Braz. J. Chem. Eng., 28: 313-323 (2011).
[35] Torab-Mostaedi M., Asadollahzadeh M., Mass Transfer Performance in an Asymmetric Rotating Disc Contactor, Chem. Eng. Res. Des., 94: 90-97 (2015).
[36] H. Grober, Die Erwarmung and Abkuhlung einfacher Geometrischer Korper, Z. Var. Dtsch. Ing., 69: 705-711 (1925).
[37] Kronig R., Brink J.C., On the Theory of Extraction From Falling Drops, Appl. Sci. Res., 2: 142-154 (1950).
[38] Handlos A.E., Baron T., Mass and Heat Transfer From Drops in Liquid–Liquid Extraction, AIChE J., 3: 127-136 (1957).