A Retrospective Investigation on Hybrid Metal Matrix Composites: Materials, Processing Methods, and Properties of Composites

Document Type : Review Article

Authors

1 Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu - 620 015, INDIA

2 Department of Mechanical Engineering, BuleHora University, Post box No. 144, Bluehora, ETHIOPIA

3 Department of Tool & Die Making, Murugappa Polytechnic College, Chennai, Tamil Nadu – 600 062, INDIA

Abstract

Hybrid MMCs are a new class of materials that exhibit superior characteristics and functional response when compared to monolithic alloys and mono-reinforced MMCs, and thus have tremendous potential for widespread application in modern industrial and engineering applications. Since the manufacturing fraternity is proliferating, a cyclic evaluation of understanding the behavior of hybrid MMCs and their evolution is needed. Therefore, to address this necessity, this paper presents a detailed review of hybrid MMC manufacturing methods, materials (matrix and reinforcement) used, physicomechanical, tribological, and corrosion properties, and challenges associated with hybrid MMCs. This retrospective investigation presents the state of the art of hybrid MMC materials in the categories involving matrix materials and their alloys, ceramics reinforcements and secondary reinforcements, and the applications and formation of microstructures. This paper also discussed the overview and the status of various matrix and reinforcement materials in manufacturing hybrid MMCs using different fabrication methods. Further, the significant challenges associated with the fabrication of hybrid MMCs using different manufacturing methods, such as distribution of reinforcement, wettability, and other common limitations identified in the literature, are presented. This paper provides a broad-spectrum attitude on hybrid MMCs techniques, challenges, and future research directions.

Keywords

Main Subjects


[1] Bhaurkar, Vyankatesh P., Bongale A, Kumar S, Bongale A., Fabrication and Analysis of Metal Matrix Composites: A State of the Art Review, AIP Conf. Proc., 2297(1): 020026. AIP Publishing LLC, (2020).
        https://doi.org/10.1063/5.0030391
[2] Singh L., Singh B., Saxena K.K., Manufacturing Techniques for Metal Matrix Composites (MMC): An Overview, Advances in Materials and Processing Technologies, 6(2):441-457 (2020).
        https://doi.org/10.1080/2374068X.2020.1729603
[3] Sharma A.K., Bhandari R., Aherwar A., Pinca-Bretotean C., A Study of Fabrication Methods of Aluminum Based Composites Focused on Stir Casting Process, Materials Today: Proceedings, 27: 1608-1612 (2020).
        https://doi.org/10.1016/j.matpr.2020.03.316
[4] Bains P.S., Sidhu S.S., Payal H.S., Fabrication and Machining of Metal Matrix Composites: A Review, Materials and Manufacturing Processes, 31(5): 553-573 (2016).
        https://doi.org/10.1080/10426914.2015.1025976
[5]  Foltz J.V., Blackmon C.M., Metal-Matrix Composites, ASM Handb, 2: 903–912 (2013).
        https://doi.org/10.1361/asmhba0001101
[6] Arun Ramnath R., Thyla P.R., Mahendra Kumar N., Aravind S., Optimization of Machining Parameters of Composites Using Multi-Attribute Decision-Making Techniques: A Review, Journal of Reinforced Plastics and Composites, 37(2): 77-89 (2018).
        https://doi.org/10.1177/0731684417732840
[7] Li J, Laghari RA, A Review on Machining and Optimization of Particle-Reinforced Metal Matrix Composites, The International Journal of Advanced Manufacturing Technology, 100(9): 2929-2943 (2019).
        https://doi.org/10.1007/s00170-018-2837-5
[8] Rajak D.K., Wagh P.H., Menezes P.L., Chaudhary A., Kumar R., Critical Overview of Coatings Technology for Metal Matrix Composites, Journal of Bio-and Tribo-Corrosion, 6(1): 1-8 (2020).
        https://doi.org/10.1007/s40735-019-0305-x
[9] Zhou M.Y., Ren L.B., Fan L.L., Zhang Y.W., Lu T.H., Quan G.F., Gupta M., Progress in Research on Hybrid Metal Matrix Composites, Journal of Alloys and Compounds, 838: 155274 (2020).
        https://doi.org/10.1016/j.jallcom.2020.155274
[10] Moona G., Walia R.S., Rastogi V., Sharma R., Aluminium Metal Matrix Composites: A Retrospective Investigation, Indian Journal of Pure & Applied Physics (IJPAP), 56(2):164-175 (2018).
[11] Malaki M., Xu W., Kasar A.K., Menezes P.L., Dieringa H., Varma R.S., Gupta M, Advanced Metal Matrix Nanocomposites, Metals, 9(3): 330 (2019).
        https://doi.org/10.3390/met9030330
[12] Borodianskiy K., Kossenko A., Zinigrad M., Improvement of the Mechanical Properties of Al-Si Alloys by TiC Nanoparticles, Metallurgical and Materials Transactions A, 44(11): 4948-4953 (2013).
        https://doi.org/10.1007/s11661-013-1850-4
[13] Borodianskiy K., Zinigrad M., Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy, Metallurgical and Materials Transactions B, 47(2): 1302-1308 (2016).
        https://doi.org/10.1007/s11663-016-0586-0
[14] Borodianskiy K., Effect of Carbon Nanotubes’ Addition on Mechanical Properties and Thermal Conductivity of Copper, Journal of Materials Science, 54(21): 13767-13774 (2019).
        https://doi.org/10.1007/s10853-019-03858-1
        https://doi.org/10.3390/polym13193344
[16] Salih O.S., Ou H., Sun W., McCartney D.G., A Review of Friction Stir Welding of Aluminium Matrix Composites, Materials & Design, 86: 61-71 (2015).
        https://doi.org/10.1016/j.matdes.2015.07.071
[17] Gopalakannan S., Senthilvelan T., Ranganathan S., Statistical Optimization of EDM Parameters on Machining of Aluminium Hybrid Metal Matrix Composite by Applying Taguchi Based Grey Analysis, Journal of Scientific & Industrial Research, 72: 358-365 (2013).
[18] Singh J, Chauhan A, Characterization of Hybrid Aluminum Matrix Composites for Advanced Applications–A Review, Journal of Materials Research and Technology, 5(2): 159-69 (2016).
        https://doi.org/10.1016/j.jmrt.2015.05.004
[19] Bodunrin M.O., Alaneme K.K., Chown L.H., Aluminium Matrix Hybrid Composites: A Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics, Journal of Materials Research and Technology, 4(4): 434-445 (2015).
        https://doi.org/10.1016/j.jmrt.2015.05.003
[20] Madhukar P., Selvaraj N., Rao C.S., Manufacturing of Aluminium Nano Hybrid Composites: A State of Review, In IOP Conference Series: Materials Science and Engineering, 149(1): 012114 (2016).
        https://doi.org/10.1088/1757-899X/149/1/012114
[21] Yi, X.-S., Du S., Zhang L. (eds.): “Composite Materials Engineering”, Vol. 1. Fundamentals of Composite Materials. Springer, Singapore (2018).
        https://doi.org/10.1007/978-981-10-5696-3
[22] Baradeswaran A.E., Perumal A.E., Influence of B4C on the Tribological and Mechanical Properties of Al 7075–B4C Composites, Composites Part B: Engineering, 54: 146-152 (2013).
        https://doi.org/10.1016/j.compositesb.2013.05.012
[23] Ahmad Z., ed, “Aluminium Alloys: New Trends in Fabrication and Applications”, BoD–Books on Demand, InTech, (2012).
[24] Sharma VK, Kumar V, Development of Rare-Earth Oxides Based Hybrid AMCs Reinforced with SiC/Al2O3: Mechanical & Metallurgical Characterization, Journal of Materials Research and Technology, 8(2): 1971-1981 (2019).
        https://doi.org/10.1016/j.jmrt.2019.01.013
[25] Gode C., Mechanical Properties of Hot Pressed SiCp and B4Cp/Alumix 123 Composites Alloyed with Minor Zr, Composites Part B: Engineering, 54: 34-40 (2013).
        https://doi.org/10.1016/j.compositesb.2013.04.068
[26] Hekner B., Myalski J., Valle N., Botor-Probierz A., Sopicka-Lizer M., Wieczorek J., Friction and Wear behavior of Al-SiC (n) Hybrid Composites with Carbon Addition, Composites Part B: Engineering, 108: 291-300 (2017).
        https://doi.org/10.1016/j.compositesb.2016.09.103
[27] Mahajan G., Karve N., Patil U., Kuppan P., Venkatesan K., Analysis of Microstructure, Hardness and Wear of Al-SiC-TiB2 Hybrid Metal Matrix Composite, Indian Journal of Science and Technology, 8(2): 101-105 (2015).
        https://doi.org/10.17485/ijst/2015/v8iS2/59081
[28] Alaneme K.K., Olubambi P.A., Corrosion and Wear Behaviour of Rice Husk Ash-Alumina Reinforced Al–Mg–Si Alloy Matrix Hybrid Composites, Journal of Materials Research and Technology, 2(2): 188-194 (2013).
        https://doi.org/10.1016/j.jmrt.2013.02.005
[29] Babu K.A., Venkataramaiah P., Yerrathota S., Material Selection for Preparation of Aluminium Hybrid Mmcs, Materials Today: Proceedings, 5(5): 12209-12222 (2018).
        https://doi.org/10.1016/j.matpr.2018.02.198
[30] Anand Babu K., Venkataramaiah P., Evaluation of Aluminium Hybrid Metal Matrix Composites by Analytical Hierarchy Process (AHP) method, Manuf. Technol. Today., 17: 3–14 (2018).
[31] Gurunagendra G.R., Raju B.R., Pujar V., Amith D.G., Siddesha H.S., Mechanical, Wear and Corrosion Properties of Micro Particulates Reinforced ZA-27 hybrid MMC by Stir Casting: A Review, Materials Today: Proceedings, 46: 7602-7607 (2021).
        https://doi.org/10.1016/j.matpr.2021.01.892
[32] Rajeswari B., Amirthagadeswaran K.S., Anbarasu K.G., Investigation on Mechanical Properties of Aluminium 7075-Silicon Carbide-Alumina Hybrid Composite Using Taguchi Method, Australian Journal of Mechanical Engineering, 13(2):127-135 (2015).
        https://doi.org/10.7158/M13-051.2015.13.2
[33] Satish J., Satish K.G., Preparation of Magnesium Metal Matrix Composites by Powder Metallurgy Process, IOP Conference Series: Materials Science and Engineering, 310 (1): 012130 (2018).
        https://doi.org/10.1088/1757-899X/310/1/012130
[34] Karthick E., Mathai J., Tony J.M., Marikkannan S.K., Processing, Microstructure and Mechanical Properties of Al2O3 and SiC Reinforced Magnesium Metal Matrix Hybrid Composites, Materials Today: Proceedings, 4(6): 6750-6756 (2017).
        https://doi.org/10.1016/j.matpr.2017.06.451
[35] Kalaiselvan K., Murugan N., Parameswaran S., Production and Characterization of AA6061–B4C Stir Cast Composite, Materials & Design, 32(7): 4004-4009 (2011).
        https://doi.org/10.1016/j.matdes.2011.03.018
[36] Narayanasamy P., Selvakumar N., Balasundar P., Effect of Hybridizing MoS2 on the Tribological Behaviour of Mg–TiC Composites, Transactions of the Indian Institute of Metals, 68(5): 911-925 (2015).
        https://doi.org/10.1007/s12666-015-0530-z
[37] Babu K.A., Venkataramaiah P., Reddy K.D., Mechanical Characterization of Aluminium Hybrid Metal Matrix Composites Synthesized by Using Stir Casting Process, Materials Today: Proceedings, 5(14): 28155-28163 (2018).
        https://doi.org/10.1016/j.matpr.2018.10.058
[38] Prakash K.S., Balasundar P., Nagaraja S., Gopal P.M., Kavimani V., Mechanical and Wear Behaviour of Mg–SiC–Gr Hybrid Composites, Journal of Magnesium and Alloys, 4(3): 197-206 (2016).
        https://doi.org/10.1016/j.jma.2016.08.001
[39] Singh H., Kumar D., Singh H., Development of Magnesium-Based Hybrid Metal Matrix Composite Through in Situ Micro, Nano Reinforcements, Journal of Composite Materials, 55(1): 109-123 (2021).
        https://doi.org/10.1177/0021998320946432
[40] Arokiasamy S., Anand Ronald B., Experimental Investigations on the Enhancement of Mechanical Properties of Magnesium-Based Hybrid Metal Matrix Composites Through Friction Stir Processing, The International Journal of Advanced Manufacturing Technology, 93(1): 493-503 (2017).
        https://doi.org/10.1007/s00170-017-0221-5
[41] Mohapatra S., Chaubey A.K., Mishra D.K., Singh S.K., Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties, Journal of Materials Research and Technology, 5(2): 117-122 (2016).
        https://doi.org/10.1016/j.jmrt.2015.07.001
[42] Basavarajappa M.P., Parashivamurth K.I., Synthesis and Tribological Characterization of In-situ Prepared Al-TiC Composites, American Journal of Materials Science, 7(4): 108-111 (2017).
        https://doi.org/10.5923/j.materials.20170704.08
[43] Raju L.S., Kumar A., A Novel Approach for Fabrication of Cu-Al2O3 Surface Composites by Friction Stir Processing, Procedia Materials Science, 5: 434-443 (2014).
        https://doi.org/10.1016/j.mspro.2014.07.286
[44] Halil K., İsmail O., Sibel D., Ramazan Ç., Wear and Mechanical Properties of Al6061/SiC/B4C Hybrid Composites Produced with Powder Metallurgy, Journal of Materials Research and Technology, 8(6): 5348-5361 (2019).
        https://doi.org/10.1016/j.jmrt.2019.09.002
[45] Vály L., Grech D., Neubauer E., Kitzmantel M., Bača Ľ., Stelzer N., Preparation of Titanium Metal Matrix Composites Using Additive Manufacturing, Key Engineering Materials, 742: 129-136 (2017).
https://doi.org/10.4028/www.scientific.net/KEM.742.129
[46] Senthil Kumar M., Managalaraja R.V., Senthil Kumar K., Natrayan L., Processing and Characterization of AA2024/Al2O3/SiC Reinforces Hybrid Composites Using Squeeze Casting Technique, Iranian Journal of Materials Science and Engineering, 16(2): 55-67 (2019).
        https://doi.org/10.22068/ijmse.16.2.55
[47] Farayibi P.K., Abioye T.E., Kennedy A., Clare A.T., Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’powders, Journal of Manufacturing Processes, 45: 429-437 (2019).
        https://doi.org/10.1016/j.jmapro.2019.07.029
[48] Umanath K.P., Palanikumar K., Selvamani S.T., Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites, Composites Part B: Engineering, 53: 159-168 (2013).
        https://doi.org/10.1016/j.compositesb.2013.04.051
[49] Jiang X., Song T., Shao Z., Liu W., Zhu D., Zhu M., Synergetic Effect of Graphene and MWCNTs on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites, Nanoscale Research Letters, 12(1): 1-2 (2017).
        https://doi.org/10.1186/s11671-017-2378-0
[50] Jain V.K., Yazar K.U., Muthukumaran S., Development and Characterization of Al5083-CNTs/SiC Composites via Friction Stir Processing, Journal of Alloys and Compounds, 798: 82-92 (2019).
        https://doi.org/10.1016/j.jallcom.2019.05.232
[51] Shen M.J., Wang X.J., Zhang M.F., Hu X.S., Zheng M.Y., Wu K., Fabrication of Bimodal Size SiCp Reinforced AZ31B Magnesium Matrix Composites, Materials Science and Engineering: A, 601: 58-64 (2014).
        https://doi.org/10.1016/j.msea.2014.02.035
        https://doi.org/10.1016/j.compscitech.2015.08.009
[53] Dorri Moghadam A., Omrani E., Menezes P.L., Rohatgi P.K., Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene – A Review, Compos. Part B Eng., 77: 402–420 (2015).
        https://doi.org/10.1016/j.compositesb.2015.03.014
[54] Trinh S.N., Sastry Sh., Processing and Properties of Metal Matrix Composites, Mech Eng Mater Sci., 10: 1–16 (2016).
[55] Guo Q., Ghadiri R., Weigel T., Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites, Polymers, 6(7): 2037–2050 (2014).
        https://doi.org/10.3390/polym6072037
[56] Sharma D.K., Mahant D., Upadhyay G., Manufacturing of Metal Matrix Composites: A State of Review, Mater. Today Proc., 26: 506–519 (2019).
         https://doi.org/10.1016/j.matpr.2019.12.128
[57] Maurya M., Kumar S., Bajpai V., Assessment of the Mechanical Properties of Aluminium Metal Matrix Composite: A Review, J. Reinf. Plast. Compos., 38: 267–298 (2019).
        https://doi.org/10.1177/0731684418816379
[58] Panwar N., Chauhan A., Fabrication Methods of Particulate Reinforced Aluminium Metal Matrix Composite-A Review, Mater. Today Proc., 5: 5933–5939 (2018).
        https://doi.org/10.1016/j.matpr.2017.12.194
[59] Nishida, Y., “Fabrication by Squeeze Casting. In: Introduction to Metal Matrix Composites”, Springer Japan, Tokyo, 53–66 (2013).
        https://doi.org/10.1007/978-4-431-54237-7_3
[60] Aynalem G.F., Processing Methods and Mechanical Properties of Aluminium Matrix Composites, Adv. Mater. Sci. Eng., Article ID 3765791, 2020:1–19 (2020).
        https://doi.org/10.1155/2020/3765791
[61] Muraliraja R., Arunachalam R., Al-Fori I., Development of Alumina Reinforced Aluminum Metal Matrix Composite with Enhanced Compressive Strength Through Squeeze Casting Process, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(3): 307-314 (2019).
        https://doi.org/10.1177/1464420718809516
[62] Natrayan L., Senthil Kumar M., A Novel Feeding Technique in Squeeze Casting to Improve Reinforcement Mixing Ratio, Mater. Today Proc., 46: 1335–1340 (2021).
        https://doi.org/10.1016/j.matpr.2021.02.423
[63] Zhang H., Loukus J., Loukus A., Improvement of the Bonding Interface in Hybrid Fiber/Particle Preform Reinforced Al Matrix Composite, Mater. Lett., 63(2): 310–312 (2009).
        https://doi.org/10.1016/j.matlet.2008.10.029
        https://doi.org/10.1177/0021998316661228
[65] S-de-la-Muela A.M., Cambronero L.E.G., Ruiz-Román J.M., Molten Metal Infiltration Methods to Process Metal Matrix Syntactic Foams, Metals, 10 (1):149 (2020).
        https://doi.org/10.3390/met10010149
[66] Etemadi R., Wang B., Pillai K.M., et al., Pressure Infiltration Processes to Synthesize Metal Matrix Composites – A Review of Metal Matrix Composites, The Technology and Process Simulation, Mater. Manuf. Process., 33(12): 1261–1290 (2018).
        https://doi.org/10.1080/10426914.2017.1328122
        https://doi.org/10.5772/intechopen.71225
[68] Das D.K., Mishra P.C., Singh S., Pattanaik S., Fabrication and Heat Treatment of Ceramic-Reinforced Aluminium Matrix Composites- A Review, Int. J. Mech. Mater. Eng., 9(6): 1–15 (2014).
        https://doi.org/10.1186/s40712-014-0006-7
        https://doi.org/10.1016/j.compositesb.2011.08.049
        https://doi.org/10.1016/j.jmapro.2019.04.017
[71] Alaneme K.K., Bodunrin M.O., Mechanical Behaviour of Alumina Reinforced AA 6063 Metal Matrix Composites Developed by Two Step – Stir Casting Process, Acta. Tech. Corveniensis- Bull Eng., 6: 105–110 (2013).
[72] Narayanan R., Saravanan C., Krishnan V., Subramanian K., Effect of Particulate Reinforced Aluminium Metal Matrix Composite – A Review, Mech. Mech. Eng., 19(1): 23–30 (2015).
[73] Soltani S., Azari Khosroshahi R., Taherzadeh Mousavian R., et al., Stir Casting Process for Manufacture of Al–SiC Composites, Rare Met., 36:581–590 (2017).
        https://doi.org/10.1007/s12598-015-0565-7
[74] Stojanović B., Babić M., Veličković S., Blagojević J., Tribological Behavior of Aluminum Hybrid Composites Studied by Application of Factorial Techniques, Tribol. Trans., 59(3):522–529 (2016).
        https://doi.org/10.1080/10402004.2015.1091535
[75] Sharma A.K., Bhandari R., Pinca-Bretotean C., A Systematic Overview on Fabrication Aspects and Methods of Aluminum Metal Matrix Composites, Mater. Today Proc., 45(5): 4133–4138 (2021).
        https://doi.org/10.1016/j.matpr.2020.11.899
        https://doi.org/10.1016/j.matdes.2011.07.037
       https://doi.org/10.3390/met8080572
        https://doi.org/10.1016/j.msea.2018.11.023
[79] Nageswaran G., Natarajan S., Ramkumar K.R., Synthesis, Structural Characterization, Mechanical and Wear Behaviour of Cu-TiO2-Gr Hybrid Composite Through Stir Casting Technique, J. Alloys Compd., 768: 733–741 (2018).
        https://doi.org/10.1016/j.jallcom.2018.07.288
[80] Boppana S.B., Dayanand S., Murthy B.V., et al., Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites, J. Compos. Sci., 5(6): 155 (2021).
        https://doi.org/10.3390/jcs5060155
[81] Sozhamannan G.G., Prabu S.B., Venkatagalapathy V.S.K., Effect of Processing Paramters on Metal Matrix Composites: Stir Casting Process, J. Surf. Eng. Mater. Adv. Technol., 02(1): 11–15 (2012).
        https://doi.org/10.4236/jsemat.2012.21002
[82] Mahendra Boopathi M., Arulshri K.P., Iyandurai N., Evaluation of Mechanical Properties of Aluminium Alloy 2024 Reinforced with Silicon Carbide and Fly Ash Hybrid Metal Matrix Composites, Am. J. Appl. Sci., 10(3): 219–229 (2013).
        https://doi.org/10.3844/ajassp.2013.219.229
[83] Prasad D.S., Shoba C., Ramanaiah N., Investigations on Mechanical Properties of Aluminum Hybrid Composites, J. Mater. Res. Technol., 3(1): 79–85 (2014).
        https://doi.org/10.1016/j.jmrt.2013.11.002
[84] David Raja Selvam J., Robinson Smart D.S., Dinaharan I., Synthesis and Characterization of Al6061-Fly Ash-SiCp Composites by Stir Casting and Compocasting Methods, Energy Procedia, 34: 637–646 (2013).
        https://doi.org/10.1016/j.egypro.2013.06.795
[85] Anish R., Singh G.R., Sivapragash M., Techniques for Processing Metal Matrix Composite; A Survey, Procedia Eng., 38: 3846–3854 (2012).
        https://doi.org/10.1016/j.proeng.2012.06.441
[86] Mussatto A., Ahad I.U., Mousavian R.T., et al., Advanced Production Routes for Metal Matrix Composites, Eng. Reports., 3: 1–25 (2021).
        https://doi.org/10.1002/eng2.12330
[87] Chen M., Fan G., Tan Z., et al., Design of an Efficient Flake Powder Metallurgy Route to Fabricate CNT/6061Al Composites, Mater Des., 142: 288–296 (2018).
       https://doi.org/10.1016/j.matdes.2018.01.044
[88] Ervina E.M.N., Siti S.N., Abdullah M.M.A.B., Fabrication Method of Aluminum Matrix Composite (Amcs): A Review, Key. Eng. Mater., 700: 102–110 (2016).
https://doi.org/10.4028/www.scientific.net/KEM.700.102
[89] Kalra Ch., Tiwari Sh., Sapra A., Sidhant Mahajan P.G., Processing and Characterization of Hybrid Metal Matrix Composites, J. Mater. Environ. Sci., 9(7): 1979–1986 (2018).
[90] Megahed M,, Attia M.A., Abdelhameed M., El-Shafei A.G., Tribological Characterization of Hybrid Metal Matrix Composites Processed by Powder Metallurgy, Acta Metall Sin (English Lett.,), 30: 781–790 (2017).
        https://doi.org/10.1007/s40195-017-0568-5
[91] Meignanamoorthy M., Ravichandran M., Synthesis of Metal Matrix Composites via Powder Metallurgy Route: a Review, Mech. Mech. Eng., 22: 65–76 (2018).
        https://doi.org/10.2478/mme-2018-0007
        https://doi.org/10.1051/mfreview/2018001
[93] Ravindran P., Manisekar K., Rathika P., Narayanasamy P., Tribological Properties of Powder Metallurgy – Processed Aluminium Self Lubricating Hybrid Composites with SiC Additions, Mater Des., 45: 561–570 (2013).
        https://doi.org/10.1016/j.matdes.2012.09.015
[94] Sharma D.K., Badheka V., Patel V., Upadhyay G., Recent Developments in Hybrid Surface Metal Matrix Composites Produced by Friction Stir Processing: A Review, J. Tribol., 143(5): 050801 (2021).
        https://doi.org/10.1115/1.4049590
[95] Vatankhah Barenji R., Khojastehnezhad V.M., Pourasl H., Rabiezadeh A., Wear Properties of Al-Al2O3 /TiB2 Surface Hybrid Composite Layer Prepared by Friction Stir Process, J. Compos Mater., 50(11): 1457–1466 (2016).
        https://doi.org/10.1177/0021998315592007
[96] Sharma V., Prakash U., Kumar B.V.M., Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 224: 117–134 (2015).
        https://doi.org/10.1016/j.jmatprotec.2015.04.019
[97] Alidokht S.A., Abdollah-zadeh A., Soleymani S., Assadi H., Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing, Mater Des., 32(5): 2727–2733 (2011).
        https://doi.org/10.1016/j.matdes.2011.01.021
[98] Arora H.S., Singh H., Dhindaw B.K., Composite Fabrication Using Friction Stir Processing—A Review, Int. J. Adv. Manuf. Technol., 61: 1043–1055 (2012).
        https://doi.org/10.1007/s00170-011-3758-8
[99] Akramifard H.R., Shamanian M., Sabbaghian M., Esmailzadeh M., Microstructure and Mechanical Properties of Cu/SiC Metal Matrix Composite Fabricated via Friction Stir Processing, Mater Des., 54: 838–844 (2014).
        https://doi.org/10.1016/j.matdes.2013.08.107
[100] Gavgali M., Onal M., Production of Metal Matrix Composites by In situ Techniques, J. Sci. Eng. Res., 4(2): 78–82 (2017).
[101] Sadeghian Z., Zohari S., Lotfi B., Broeckmann C., Fabrication and characterization of reactive Ni–Ti–C powder by mechanical alloying, J Alloys Compd., 589:157–163 (2014).
           https://doi.org/10.1016/j.jallcom.2013.11.156
[102] Zhu H., Dong K., Wang H., et al., Reaction Mechanisms of the TiC/Fe Composite Fabricated By Exothermic Dispersion from Fe–Ti–C Eement System, Powder Technol., 246: 456–461 (2013).
        https://doi.org/10.1016/j.powtec.2013.06.002
[103] Roy D., Ghosh S., Basumallick A., Basu B., Preparation of Ti-Aluminide Reinforced in Situ Aluminium Matrix Composites by Reactive Hot Pressing, J. Alloys. Compd., 436(1-2): 107–111 (2007).
        https://doi.org/10.1016/j.jallcom.2006.07.017
[104] Tjong, S.C., Ma Z.Y., Microstructural and Mechanical Characteristics of in Situ Metal Matrix Composites, Mater. Sci. Eng. R. Reports, 29(3-4): 49–113 (2000).
        https://doi.org/10.1016/S0927-796X(00)00024-3
[105] Li N., Liu W., Wang Y., et al., Laser Additive Manufacturing on Metal Matrix Composites: A Review, Chinese. J. Mech. Eng., 34: 38 (2021).
        https://doi.org/10.1186/s10033-021-00554-7
[106] Li N., Huang S., Zhang G., et al., Progress in Additive Manufacturing on New Materials: A Review, J. Mater. Sci. Technol., 35(2): 242–269 (2019).
        https://doi.org/10.1016/j.jmst.2018.09.002
[107] Popov V.V., Fleisher A., Hybrid Additive Manufacturing of Steels and Alloys, Manuf. Rev., 7(6): 1–9 (2020).
         https://doi.org/10.1051/mfreview/2020005
[108] Huang S.H., Liu P., Mokasdar A., Hou L., Additive Manufacturing and Its Societal Impact: A Literature Review, Int. J. Adv. Manuf. Technol., 67: 1191–1203 (2013).
        https://doi.org/10.1007/s00170-012-4558-5
         https://doi.org/10.1177/0021998316646169
[110] Babu S.S., Goodridge R., Additive Manufacturing, Mater Sci Technol., 31(8): 881–883 (2015).
       https://doi.org/10.1179/0267083615Z.000000000929
         https://doi.org/10.3390/app11031336
[112] Turk D.A., Ebnother A., Zogg M., Meboldt M., Additive Manufacturing of Structural Cores and Washout Tooling for Autoclave Curing of Hybrid Composite Structures, J. Manuf. Sci. Eng. Trans., ASME, 140(10): 1–14 (2018).
        https://doi.org/10.1115/1.4040428
[113] Tofail S.A.M., Koumoulos E.P., Bandyopadhyay A., et al., Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities, Mater. Today, 21(1): 22–37 (2018).
        https://doi.org/10.1016/j.mattod.2017.07.001
[114] Mostafaei A., Heidarzadeh A., Brabazon D., Production of Metal Matrix Composites Via Additive Manufacturing. In: Encyclopedia of Materials: Composites, Encyclopedia of Materials: Composites, Elsevier, 2: 605–614 (2021).
       https://doi.org/10.1016/b978-0-12-803581-8.11884-3
        https://doi.org/10.1007/978-3-319-91713-9-3
        https://doi.org/10.1016/j.ceramint.2018.08.083
[117] Falck R., Goushegir S.M., dos Santos J.F., Amancio-Filho S.T., Addjoining: A Novel Additive Manufacturing Approach for Layered Metal-Polymer Hybrid Structures, Mater Lett., 217: 211–214 (2018).
        https://doi.org/10.1016/j.matlet.2018.01.021
[118] Singh N., Singh R., Ahuja I.P.S., et al., Metal Matrix Composite from Recycled Materials by Using Additive Manufacturing Assisted Investment Casting, Compos Struct., 207: 129–135 (2019).
         https://doi.org/10.1016/j.compstruct.2018.09.072
[119] Mahmood M.A., Popescu A.C., Mihailescu I.N., Metal Matrix Composites Synthesized by Laser-Melting Deposition: A Review, Materials, 13(11): 2593 (2020).
        https://doi.org/10.3390/ma13112593
[120] Bhuvanesh Kumar M., Sathiya P., Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges, Thin-Walled Struct., 159: 107228 (2021).
         https://doi.org/10.1016/j.tws.2020.107228
[121] Wang Y., Zhou Y., Lin L., et al., Overview of 3D Additive Manufacturing (AM) and Corresponding AM Composites, Compos. Part A: Appl. Sci. Manuf., 139: 106114 (2020).
        https://doi.org/10.1016/j.compositesa.2020.106114
[122] Oztan C., Coverstone V., Utilization of Additive Manufacturing in Hybrid Rocket Technology: A Review, Acta Astronaut, 180: 130–140 (2021).
        https://doi.org/10.1016/j.actaastro.2020.11.024
[123] Behera M.P., Dougherty T., Singamneni S., Conventional and Additive Manufacturing with Metal Matrix Composites: A Perspective, Procedia Manuf., 30: 159–166 (2019).
        https://doi.org/10.1016/j.promfg.2019.02.023
[124] Wang P., Eckert J., Prashanth K., et al., A Review of Particulate-Reinforced Aluminum Matrix Composites Fabricated By Selective Laser Melting, Trans Nonferrous Met Soc China, 30(8): 2001–2034 (2020).
        https://doi.org/10.1016/S1003-6326(20)65357-2
[125] Li J., Monaghan T., Nguyen T.T., et al., Multifunctional Metal Matrix Composites with Embedded Printed Electrical Materials Fabricated by Ultrasonic Additive Manufacturing, Compos Part B: Eng., 113: 342–354 (2017).
         https://doi.org/10.1016/j.compositesb.2017.01.013
[126] Yoganjaneyulu G., Anand Babu K., Venkata Siva G., et al., Microstructure and Mechanical Properties of Al–6Zn–3Mg–2Cu–0.5Sc Alloy, Mater. Lett., 253: 18–21 (2019).
         https://doi.org/10.1016/j.matlet.2019.06.023
[127] Yoganjaneyulu G., Anand Babu K., Vigneshwaran S., Narayanan C.S., Microstructure and Mechanical Properties of Cryorolled Al–6Zn–3Mg–2Cu–0.5Sc Alloy, Mater. Lett., 255: 3–6 (2019).
         https://doi.org/10.1016/j.matlet.2019.126606
[128] Bhoi N.K., Singh H., Pratap S., Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles-A Review, J. Compos. Mater., 54(6): 813–833 (2020).
         https://doi.org/10.1177/0021998319865307
[129] Kim C-S., Cho K., Manjili M.H., Nezafati M., Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs), J. Mater. Sci., 52: 13319–13349 (2017).
         https://doi.org/10.1007/s10853-017-1378-x
[130] Kumar D., Phanden R.K., Thakur L., A Review on Environment Friendly and Lightweight Magnesium-Based Metal Matrix Composites and Alloys, Mater. Today Proc., 38(1): 359–364
(2020).
         https://doi.org/10.1016/j.matpr.2020.07.424
[131] Dash D., Samanta S., Rai R.N., Study on Fabrication of Magnesium based Metal Matrix Composites and its improvement in Mechanical and Tribological Properties- A Review, IOP Conf. Ser. Mater. Sci. Eng., 377:012133 (2018).
        https://doi.org/10.1088/1757-899X/377/1/012133
[132] Monteiro W.A., Buso S.J., da L.V., Application of Magnesium Alloys in Transport. In: New Featur Magnes Alloy, In Techopen., 1–14 (2012).
        https://doi.org/10.5772/48273
[133] Dey A., Pandey K.M., Magnesium Metal Matrix Composites-A Review, Rev. Adv. Mater. Sci., 42: 58–67 (2015).
[134] Sambathkumar M., Navaneethakrishnan P., Ponappa K., Sasikumar K.S.K., Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process, Lat. Am. J. Solids Struct., 14(2): 243–255
(2017).
        https://doi.org/10.1590/1679-78253132
[135] Ajagol P., Anjan B.N., Marigoudar R.N., Preetham Kumar G.V., Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite, IOP Conf. Ser. Mater. Sci. Eng., 376: 012057 (2018).
        https://doi.org/10.1088/1757-899X/376/1/012057
[136] Jamwal A., Prakash P., Kumar D., et al., Microstructure, Wear and Corrosion Characteristics of Cu Matrix Reinforced SiC–Graphite Hybrid Composites, J. Compos. Mater., 53(18): 2545–2553 (2019).
        https://doi.org/10.1177/0021998319832961
         https://doi.org/10.1007/978-981-13-8196-6_35
[138] Kumar K.R., Mohanasundaram K.M., Arumaikkannu G., Subramanian R., Effect of Particle Size on Mechanical Properties and Tribological Behaviour of Aluminium/Fly Ash Composites, Sci Eng Compos Mater., 19: 247–253 (2012). https://doi.org/10.1515/secm-2011-0139
[139] Mittal P., Paswan M.K., Sadasivuni K.K., Gupta P.,Structural, Wear and Thermal Behaviour of Cu–Al2O3–Graphite Hybrid Metal Matrix Composites, , Proc Inst Mech Eng Part L: J Mater Des Appl., 234(8):1154–1164 (2020). https://doi.org/10.1177/1464420720929377
[140] Murugan S.S., Jegan V., Velmurugan M., Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite, J. Inst. Eng. Ser. D, 99:71–77 (2018).
        https://doi.org/10.1007/s40033-017-0142-3
[141] Hayat M.D., Singh H., He Z., Cao P., Titanium metal matrix composites: An overview, Compos Part A: Appl Sci Manuf., 121: 418–438 (2019). https://doi.org/10.1016/j.compositesa.2019.04.005
[142] Ma X., Zhao Y.F., Tian W.J., et al., A Novel Al Matrix Composite Reinforced by Nano-Aln P Network, Sci Rep., 6:34919, 1–8 (2016).
        https://doi.org/10.1038/srep34919
[143] Reddy P.V., Kumar G.S., Krishnudu D.M., Rao H.R., Mechanical and Wear Performances of Aluminium-Based Metal Matrix Composites: A Review, J Bio Tribo Corros., 6: 83 (2020).
        https://doi.org/10.1007/s40735-020-00379-2
[144] Vijaya Bhaskar S., Rajmohan T., Palanikumar K., Bharath Ganesh Kumar B., Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites, J. Inst. Eng. Ser. D, 97:59–67 (2016). https://doi.org/10.1007/s40033-015-0074-8
[145] Griffiths R.J., Perry M.E.J., Sietins J.M., et al., A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD,
J. Mater. Eng. Perform., 28: 648–656 (2019).
[146] Das D.K., Mishra P.C., Singh S., Thakur R.K., Properties of Ceramic-Reinforced Aluminium Matrix Composites - A Review, Int. J. Mech. Mater. Eng., 9: 12 (2014).
       https://doi.org/10.1186/s40712-014-0012-9
[147] Razzaq A.M., Majid D.L., Ishak M.R., Basheer U.M., Effect of Fly Ash Addition on the Physical and Mechanical Properties of AA6063 Alloy Reinforcement, Metals, 7(11): 1–15 (2017).
       https://doi.org/10.3390/met7110477
[148] Kulkarni S.G., Meghnani J.V., Lal A., Effect of Fly Ash Hybrid Reinforcement on Mechanical Property and Density of Aluminium 356 Alloy, Procedia Mater Sci., 5: 746–754 (2014).
        https://doi.org/10.1016/j.mspro.2014.07.324
[149] Senapati M.R., Fly Ash from Thermal Power Plants -Waste Management and Overview, Curr. Sci., 100(12): 1791–1794 (2011).
[150] Haque M.E., Indian Fly-Ash: Production and Consumption Scenario, Int. J. Waste Resour., 3(1): 22–25 (2013).
        https://doi.org/10.12777/ijwr.3.1.2013.22-25
[153] Pitchayyapillai G., Seenikannan P., Raja K., Chandrasekaran K., Al6061 Hybrid Metal Matrix Composite Reinforced with Alumina and Molybdenum Disulphide, Adv. Mater. Sci. Eng., 2016: Article ID 6127624 (2016).
[154] Sirahbizu Yigezu B., Mahapatra M.M., Jha P.K., Influence of Reinforcement Type on Microstructure, Hardness, and Tensile Properties of an Aluminum Alloy Metal Matrix Composite, J. Miner. Mater. Charact. Eng.., Article ID:33948, 01(4):124–130 (2013).
[155] Soni T., Ramini S., Lakshmikanthan A., "Development of Aluminium Based Hybrid (AA5083/Fly Ash/ SiCp) MMCs for Ship Building Applications", 5th World Conference on Applied Sciences, Engineering & Technology, 3–7 (2016).
[157] Anand Babu K., Venkataramaiah P., Selection of Optimum Aluminium Hybrid Metal Matrix Composite Using FUZZY AHP-VIKOR Method, IJRAR - International Journal of Research and Analytical Reviews, 5(4): 246–254 (2018).
        http://www.ijrar.org/IJRAR1944027.pdf 
[158] Srikanth B.G, Amarnath G., Characterization of Aluminium Reinforced with Tungsten Carbide Particulate and Flyash Metal Matrix Composites, Int J Eng Res Technol., 4(5):623–627 (2015). https://doi.org/10.17577/ijertv4is050719
[159] Krishna M.V, Xavior A.M., An Investigation on The Mechanical Properties of Hybrid Metal Matrix Composites, Procedia Eng., 97: 918–924 (2014). https://doi.org/10.1016/j.proeng.2014.12.367
[161] Suhael Ahmed S., Girisha H.N., Experimental Investigations on Mechanical Properties of Al7075/Tib2/Gr Hybrid Composites, Mater. Today Proc., 46(13): 6041-6044 (2021).
        https://doi.org/10.1016/j.matpr.2021.01.960
[162] Gu D., Wang H., Dai D., et al., Rapid Fabrication of Al-Based Bulk-Form Nanocomposites With Novel Reinforcement and Enhanced Performance by Selective Laser Melting, Scr. Mater., 96: 25–28 (2015). https://doi.org/10.1016/j.scriptamat.2014.10.011
[164] Menezes P.L., Nosonovsky M., Kailas S.V., Lovell M.R., Friction and Wear. In: Menezes P.L., Nosonovsky M, Ingole S.P., et al (eds) “Tribology for Scientists and Engineers”. Springer, New York, 43–91 (2013).
https://doi.org/10.1016/j.mser.2013.08.001
[166] Ram Prabhu T., Murugan M., Chiranth B.P., et al., Effects of Dual-Phase Reinforcement Particles (Fly Ash + Al2O3) on the Wear and Tensile Properties of the AA 7075 Al Alloy Based Composites, J. Inst. Eng. Ser D, 100: 29–35 (2019).
        https://doi.org/10.1007/s40033-019-00172-7
[167] Kala H., Mer K.K.S., Kumar S., A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites, Procedia Mater Sci., 6:1951–1960 (2014).
https://doi.org/10.1016/j.mspro.2014.07.229
[168] Zhou M., Qu X., Ren L., et al., The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy, Materials, 10(12): 1385 (2017). https://doi.org/10.3390/ma10121385
[169] Subramanian S.M., Vijayan J., Muthaiah V., Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al. Matrix Hybrid Composite, J. Inst. Eng. Ser. D, 98: 291–296 (2017). https://doi.org/10.1007/s40033-016-0134-8
[170] Omrani E., Moghadam A.D., Menezes P.L., Rohatgi P.K., Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review, Int. J. Adv. Manuf. Technol., 83: 325–346 (2016). https://doi.org/10.1007/s00170-015-7528-x
[171] Abazari S., Shamsipur A., Bakhsheshi-Rad H.R., et al., Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review, Materials, 13(19): 4421 (2020).
        https://doi.org/10.3390/ma13194421
[172] Sharma A., Mishra P.M., Machining Characteristics, Tribological and Corrosion Behaviour of AA7075 Hybrid Composites, Int. J. Eng. Adv. Technol., 9(5): 566–571 (2020).
        https://doi.org/10.1063/1.5122399
[174] Sivanesh Prabhu M., Elaya Perumal A., Arulvel S., Franklin Issac R., Friction and Wear Measurements of Friction Stir Processed Aluminium Alloy 6082/CaCO3 Composite, Measurements, 142: 10–20 (2019). https://doi.org/10.1016/j.measurement.2019.04.061
[175] Thirumalai T., Subramanian R., Kumaran S., et al., Production and Characterization of Hybrid Aluminum Matrix Composites Reinforced with Boron Carbide (B4C) and Graphite, J Sci Ind Res (India) 73:667–670 (2014).
[176] Alaneme K.K., Adewale T.M., Olubambi P.A., Corrosion and Wear Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composites Reinforced with Rice Husk Ash and Silicon Carbide, J. Mater. Res. Technol., 3(1):9–16 (2014).
        https://doi.org/10.1016/j.jmrt.2013.10.008
[177] Singh N., Belokar R.M., Tribological Behavior of Aluminum and Magnesium-Based Hybrid Metal Matrix Composites: A State-Of-Art Review, Mater Today Proc., 44(1):460–466 (2021). https://doi.org/10.1016/j.matpr.2020.09.757
[178] Veeresh Kumar G.B., Rao C.S.P., Selvaraj N., Studies on Mechanical and Dry Sliding Wear of Al6061-Sic Composites, Compos. Part B: Eng., 43(3):1185–1191 (2012).  
        https://doi.org/10.1016/j.compositesb.2011.08.046
[179] Kumar G.B.V., Rao C.S.P., Selvaraj N., Bhagyashekar M.S., Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites, J. Miner. Mater. Charact. Eng., 09(1): 43–55 (2010). https://doi.org/10.4236/jmmce.2010.91004
[180] Harti J.I., Sridhar B.R., Vitala H.R., Jadhav P.R., Wear Behavior of Al2219-TiC Particulate Metal Matrix Composites, American Journal of Materials Science, 5(3C): 34–37 (2015).
        https://doi.org/10.5923/c.materials.201502.07
[181] Palanikumar K., Eaben Rajkumar S., Pitchandi K., Influence of Primary B4C Particles and Secondary Mica Particles on the Wear Performance of Al6061/B4C/Mica Hybrid Composites, J. Bio- Tribo-Corrosion 5: 77 (2019).
[182] Kumar J., Singh D., Kalsi N.S., et al., Investigation on the Mechanical, Tribological, Morphological and Machinability Behavior of Stir-Casted Al/Sic/Mo Reinforced MMCs, J. Mater. Res. Technol., 12: 930–946 (2021).       
[183] Babu K.A., Jeyapaul R., An Investigation into the Wear Behaviour of a Hybrid Metal Matrix Composite Under Dry Sliding Conditions Using Taguchi and ANOVA Methods, J. Bio- Tribo-Corrosion, 8:15 (2022). https://doi.org/10.1007/s40735-021-00608-2
[184] Niveen J. Abd Alkadir, Payman S. Ahmed, Ali Jamal Abdulqader, Optimization of Corrosion Behaviour of Aluminium Metal Matrix Composite Reinforced with Nanoparticles Using Taguchi’s Techniques, Int. Conf. Ind. Eng. Oper. Manag., 1-18 (2015).
[185] Sunitha N., Manjunatha K.G., Khan S., Sravanthi M., Study of Sic/Graphite Particulates on The Corrosion Behavior of Al 6065 Mmcs Using Tafel Polarization and Impedance, S.N. Appl. Sci., 1:1024 (2019). https://doi.org/10.1007/s42452-019-1063-6
[186] Zakaria H.M., Microstructural and Corrosion Behavior of Al/Sic Metal Matrix Composites, Ain Shams Eng. J., 5(3): 831–838 (2014).
        https://doi.org/10.1016/j.asej.2014.03.003
[187] Kumar S.D., Ravichandran M., Jeevika A., et al., Effect of Zrb2 on Microstructural, Mechanical and Corrosion Behaviour of Aluminium (AA7178) Alloy Matrix Composite Prepared by the Stir Casting Route, Ceram Int., 47(9): 12951–12962 (2021). https://doi.org/10.1016/j.ceramint.2021.01.158
[189] Bagesh Bihari, Srijan Prabhakar AKS, Corrosion Behaviour of Al 7075/Al2O3/Graphite Hybrid Composite in 3.5% Sodium Chloride Solution, Int. J. Eng. Res. Technol., 7(1): 41–45 (2018).
[190] Gangadhar T.G., Girish D.P., Prapul Chandra A.C., Karthik Raj K.V., Effect of Hybrid Reinforcements on Corrosion Characteristics of Al7075 Based Composites, Mater. Today Proc., 46(13): 5986-5990 (2021). https://doi.org/10.1016/j.matpr.2020.12.779
[191] Singh M.K., Gautam R.K., Ji G., Mechanical Properties and Corrosion Behavior of Copper Based Hybrid Composites Synthesized by Stir Casting, Results Phys, 13: 102319 (2019).
        https://doi.org/10.3844/ajassp.2013.219.229