Statistical Study for Optimization Magnetic Property of Modified MNPs (Fe_3 O_4/PEG(PVA)) Synthesis by Co-Precipitation Method

Document Type : Research Article

Authors

1 Department of Physics, Tehran North Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Engineering, Shahriar Branch, Islamic Azad University, Shahriar, I.R. IRAN.

3 Departments of Physics, Varamin Pishva Branch, Islamic Azad University, Varamin, I.R. IRAN

4 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

Abstract

IIn this research, MNPs were fabricated and coated by the co-precipitation method. The study of this process was performed in a two-level factorial design framework. The effect of a polymeric agent, the strength of the alkaline solution, and the temperature on the magnetic properties MNPs were studied in this design. the structure, morphology, size, appearance, and magnetic behavior of modified MNPs were investigated using XRD, FT-IR, TEM, and VSM. The results obtained from the spectra show the modified MNPs have superparamagnetic behavior with high saturation magnetization ( ) and small coercivity ( ). The mean size of coated MNPs was determined 10 nm, saturation magnetization 60.98 emu/g, and magnetic coercivity 8.26 G.

Keywords

Main Subjects


[1] Arosio p., Applications and Properties of Magnetic Nanoparticles, Nanomaterials, 11: 1297 (2020).
[2] Khan P.L., Saeed K., Khan I., Nanoparticles: Properties, Applications and Toxicities, Arabian Journal of Chemistry.,12(7): 908-931 (2019)  
        doi: 10.1016/j.arabjc.2017.05.011
[3] Monsalve A., Vicente J., Grippin A., Dobson J., Poly (Lactic Acid) Magnetic Microparticle Synthesis and Surface Functionalization IEEE, Magnetics Letters, 8 (2017).
        doi: 10.1109/LMAG.2017.2726505.
        DOI: 10.1016/S0168-8278(17)30348-3
[5] Ali A., Zafar H., Zia M., Ul Haq I., Phull A.R., Sarfraz Ali J., Hussain A., Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles, Nanotechnol Sci Appl., 2016(9): 49-61 (2016)
        doi: 10.2147/NSA.S99986
[6] Mohammed L., Gomaa H.G., Ragab D., Zhu J., Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review, Particuology, 30 (2017)
        DOI: 10.1016/j.partic.2016.06.001
[7] Farahmandjou M., Khodadadi A., Yaghoubi M., Synthesis and Characterization of Fe-Al2O3 Nanoparticles Prepared by Coprecipitation Method, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(3): 725-730 (2021).
        DOI: 10.30492/ijcce.2020.38036
[8] T. Poursaberi, V. Akbar, S.M.R. Shoja, Application of Rh(III)-Metalloporphyrin Grafted Fe3O4 Nanoparticles for the Extraction of Thiocyanate Ions from Aqueous Solutions, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 34(2): 41-49 (2015).
        DOI: 10.30492/ijcce.2015.14095
[9] Karimzadeh I., Aghazadeh M., Dalvand A., Doroudi T., Kolivand P. H., Ganjali M. R., Norouzi P., Effective Electrosynthesis and in Situ Surface Coating of Fe3O4 Nanoparticles with Polyvinyl Alcohol for Biomedical Applications, Materials Research Innovations, 23(1): 1-8(2019)
[10] S.H. Ahmadi, P. Davar, A. Manbohi,  Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(1): 63-73 (2016).
        DOI: 10.30492/ijcce.2016.18809
        doi:10.2174/1573413714666180622150216
[12] Suzdalev I. P., Maksimov Yu. V., Imshennik V. K., Novichikhin S.V., Matveev V.V., Tret’yakov Yu. D., Lukashin A.V., Eliseev A.A., Avramenko N.V., Malygin A.A., Sosnov E.A., Formation and Properties of the Nanocluster Structure of Iron Oxides, Russian Chemical Bulletin 55: 1755–1767 (2006).
[13] Khodadadi A., Talebtash M.R, Investigation and Synthesis of Fe Doped Al2O3 Nanoparticles by Co-Precipitation and Sol Gel Methods, Asian Journal of Nanosciences and Materials, 6(2):   (2022).
[14] Trukhanov A.V., Kostishyn V.G., Panina L.V., Korovushkin V.V., Turchenko V.A., Thakur P., Thakur A., Yang Y., Vinnik D.A., Yakovenko E.S., Matzui L.Y., Trukhanova E.L., Trukhanov S.V., Control of Electromagnetic Properties in Substituted M-Type Hexagonal Ferrites, Journal of Alloys and Compounds, 754: 247-256 (2018)
        doi: 10.1016/j.jallcom.2018.04.150.
[15] Dukenbayev K., Korolkov I.V., Tishkevich D.I., Kozlovskiy A.L., Trukhanov S.V., Gorin Y.G., Shumskaya E.E., Kaniukov E.Y., Vinnik D.A., Zdorovets M.V., Anisovich M., Trukhanov A.V., Tosi D., Molardi C., Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy, Nanomaterials, 9:494 (2019)
        https://doi.org/10.3390/nano9040494
[16] Farahmandjou M., Soflaee F., Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple Co-Precipitation Method, Phys. Chem. Res. 3: 193 (2015)
        doi: 10.22036/PCR.2015.9193.
[17] Effenberger F. et al, Effenberger F B, Couto R A, Kiyohara P K., Economically Attractive Route for the Preparation of High-Quality Magnetic Nanoparticles by the Thermal Decomposition of Iron (III) Acetylacetonate, Nanotechnology, 28: 115603 (2017)
        Doi: 10.1088/1361-6528/aa5ab0
[18] Patselas V., Kosinová L., Lovri M., Ferhatovic L., Rabyk M., Konefal R., Paruzel A., Šlouf M., Heryenk V., Gajović S., Horák D., Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron (III) Glucuronate and Application in Magnetic Resonance Imaging, ACS Appl. Mater. Interfaces, 8: 7238-7247 (2016)
        doi: 10.1021/acsami.5b12720.
[19] M. Farahmandjou, S.A. Salehizadeh, The Optical Band Gap and the Tailing States Determination in Glasses of TeO2-V2O5-K2O System, Glass Phys. Chem., 39:473 (2013)
        doi: 10.1134/S1087659613050052.  
[20] Albert E.L., Che Abdullah C.A., Shirataki Y., Synthesis and Characterization of Graphene Oxide Functionalized with Magnetic Nanoparticle via Simple Emulsion Method, Results Phys., 11: 944-950 (2018)
        doi: 10.1016/j.rinp.2018.10.054.
[21] Farahmandjou M., Honarbakhsh S., Behrouzinia S., PVP-Assisted Synthesis of Cobalt Ferrite (CoFe2O4) Nanorods, Phys. Chem. Res., 4: 655 (2016)
         doi: 10.22036/pcr.2016.16702.
[22] Ali A., Rehmat S., Zhou P., Guo K., Ovais M., Rehmat, Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications, Front Chem., 9 :629054 (2021).
        doi: 10.3389/fchem.2021.629054
[23] Khodadadi A., Talebtash M.R., Farahmandjou M., Effect of PVA/PEG-coated Fe3O4 Nanoparticles on the Structure, Morphology and Magnetic Properties, Physical Chemistry Research, 10: 537 (2022).
        doi: 10.22036/pcr.2022.326878.2023
[24] Bajaj N.S., Joshi R.A., The Coprecipitation is the Simplest Way to Prepare Iron Oxide Nanoparticles of Magnetite (Fe3O4). In “Handbook of Nanotechnology Application” (2021).
[25] Chu X., Hou Y.L., Magnetic Nanomaterials: Fundamentals, Synthesis and Applications. In Y. L. Hou, D. J. Selmer (Eds.), “Overview of Synthesis of Magnetic Nanomaterials”, John Wiley & Sons, Inc., 83-120 (2017).
[26] Koo K., Ismail A.E., Othman M.D., Bidin N., Rahman M., Preparation and Characterization of Superparamagnetic Magnetite (Fe3O4) Nanoparticles: A Short Review, Malaysian J. Fund. Appl. Sci., 15: 23-31 (2019).
        doi: 10.11113/mjfas.v15n2019.1224.
        doi: 10.1007/s11051-017-4065-6.
        doi: 10.1007/s11051-014-2484-1
[29] Tishkevich D.I., Korolkov I.V., et al.,  Immobilization of Boron-Rich Compound on Fe3O4 Nanoparticles: Stability and Cytotoxicity, Journal of Alloys and Compounds, 797: 573-581 (2019).
[30] Trukhanov S.V., Trukhanov A.V., et al, Polarization Origin and Iron Positions in Indium Doped Barium Hexaferrites, Ceramics International, 44: 290-300 (2018).
[31] Ahrberg C.D, Choi J.W., Chung B.G., Automated Droplet Reactor for the Synthesis of Iron Oxide/Gold Core-Shell Nanoparticles, Sci. Rep., 10: 1737 (2020).
        doi: 10.1038/s41598-020-58580-9
[32] Salehipour M., Rezaei S., safer J., Pakdin-Parizi Z., Recent Advances in Polymer-Coated Iron Oxide Nanoparticles as Magnetic Resonance Imaging Contrast Agents, J. Nanoparticle Res., 23 (2021).
        Doi: 10.1007/s11051-021-05156-x.
[35] Grize Y.L., A Review of Robust Process Design Approaches, J. Chemom., 9: 239 (1995).
        Doi: 10.1002/cem.1180090402
[36] Kalil S.J., Maugeri F., Rodrigues M.I., Response Surface Analysis and Simulation as a Tool for Bioprocess Design and Optimization, Process Biochem., 35(6): (2000).
        Doi: 10.1016/S0032-9592(99)00101-6
[37] Gheshlagi R., Scharer J.M., Moo-young M., Douglas P.L., Application of Statistical Design for the Optimization of Amino Acid Separation by Reverse-Phase HPLC, Biochem., 383 (2008).
        DOI: 10.1016/j.ab.2008.07.032
[38] Sadeghi S., Azhdari H., Arabi H., Moghaddam A.S., Surface Modified Magnetic Fe3O4 Nanoparticles as a Selective Sorbent for Solid Phase Extraction of Uranyl Ions from Water Samples, Journal of Hazardous Materials, 215 (2012).
        Doi: 10.1016/j.jhazmat.2012.02.054
[39] Behnam-Saba A.R., Saberyan K., Nezhadali A., Adelkhani H., A Chemometric Study of the Adsorption of Zr(IV) Ions from Aqueous Solutions onto TBP-Surface-Modified Magnetic Fe3O4 Nanoparticles as a New Adsorbent, Radiochemistry, 62: 62-72 (2020).
        Doi: 10.1134/s1066362220010087
[40] Massart D. L., Vandeginste B.G.M., Buydens L.M.C., De Jong S., Lewi P. J., Smeyers-Verbeke J., Handbook of Chemometrics and Qualimetrics:  Part A, J. Chem. Inf. Comput. Sci., 38(6): 1254 (1998).
        doi: 10.1021/ci980427d
[41] Scherrer p., Bestimmung Der inneren Struktur und der Größe von Kolloidteilchen Mittels Röntgenstrahlen, Mathematisch- Physikalische Klasse, 2 (1918)
        doi: 10.1155/2017/9437487.
[43] Farahmandjou M., Jurablu S., Co-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor, Int. J. Bio-Inorg. Hybr. Nanomater., 3 (2014)
        doi: 10.1016/j.jmmm.2016.11.033.
[45] Khodadadi A., Farahmandjou M., Yaghoubi M., Investigation on Synthesis and Characterization of Fe-doped Al2O3 Nanocrystals by New Sol–Gel Precursors, Mater. Res. Express., 6(2) (2018).
        doi: 10.1088/2053-1591/aaef70.
[46] Assay F., Jafarizadeh Malmiri H., Ajamein H., Anarjan N., Vaghari H., Sayyar Z., Berenjian A., A biotechnological Perspective on the Application of Iron Oxide Nanoparticles, Nano Res., 9: 2203-2225 (2016).
        doi: 10.1007/s12274-016-1131-9
[47] Liu B., Wang D., Huang W., Yao A., Kamitakahara M., Ioku K., Preparation of Magnetite Nanoparticles Coated with Silica via a Sol-Gel Approach, Journal of the Ceramic Society of Japan, 115 (2007)
 [48] Businova P. Chomoucka J., Prasek J., Hrdy R., Drbohlavova J., Sedlacek P., Hubalek J., Polymer Coated Iron Oxide Magnetic Nanoparticles: Preparation and Characterization, Nanocon, 9 (2011)
[49] Anil A.C., Govindan K., Rangarajan M., Synthesis of Poly (Ethylene Glycol) (PEG)-Capped Fe3O4 Nanoclusters by Hydrothermal Method, Materials Science and Engineering, 577 (2019).
        doi:10.1088/1757-899X/577/1/012153
[50] Schoenmakers P.J., Bartha A., Billiet H., Gradien Elution Methods for Predicting Isocratic Conditions, J. Chromatogr., 550 (1991).
        doi: 10.1016/s0021-9673(01)88554-X
[51] Mahadevan S., Gnanaprakash G., Philip J., Rao B.P.C., Jayakumar T., X-Ray Diffraction-Based Characterization of Magnetite Nanoparticles in Presence of Goethite and Correlation with Magnetic Properties, Physica E: Low-Dimensional Systems and Nanostructures, 39 (2007).
        doi: 10.1016/J.Physe.2006.12.041