Fe3O4/Polystyrene-Alginate Nanocomposite as a Novel Adsorbent for Highly Efficient Removal of Dyes

Document Type : Research Article


1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Department of Engineering Science, College of Engineering, University of Tehran, Tehran, I.R. IRAN


In this study, Fe3O4/polystyrene-alginate nanocomposite with high adsorption capacity was successfully prepared. Characterization of Fe3O4/polystyrene-alginate nanocomposite was carried out by various instruments, including SEM, EDX, FT-IR, XRD, and TGA. Then, the prepared nanocomposite was applied to remove malachite green as a cationic dye from aqueous solutions. The kinetic study was performed and the results showed the suitability of the pseudo-second-order kinetic model (R2 = 0.994). The influence of different parameters, such as initial dye concentration, solution pH, adsorbent dosage, and contact time on the procedure was extensively investigated. The maximum adsorption of malachite green onto Fe3O4/polystyrene-alginate nanocomposite was found at an initial concentration of 20 mg/L, pH 7, adsorbent’s dosage 500 mg/L, contact time equal to 20 min. To understand the nature of the adsorption procedure, the equilibrium adsorption isotherms were investigated. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The adsorption of malachite green was better fitted to Langmuir isotherm (R2 = 0.996). According to the Langmuir isotherm model, the maximum adsorption capacity of Fe3O4/polystyrene-alginate nanocomposite for sequestering malachite green was about 90.81 mg/g. In addition, negative ΔG0 and ΔH0 values obtained through thermodynamic investigation implied that the adsorption of malachite green onto Fe3O4/polystyrene-alginate nanocomposite was simultaneous and exothermic in nature, respectively.


Main Subjects

[1] Giahi M., Rahbar A., Mehdizadeh K., Photochemical Degradation of an Environmental Pollutant by Pure ZnO and MgO Doped ZnO Nanocatalysts, Iran. J. Chem. Chem. Eng.(IJCCE), 40(1): 83-91 (2021).
[2] Piramoon S., Aberoomand Azar P., Tehrani M. S., Mohamadi Azar S., Optimization of Solar-Photocatalytic Degradation of Polychlorinated Biphenyls Using Photocatalyst (Nd/Pd/TiO2) by Taguchi Technique and Detection by Solid Phase Nano Extraction, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 1541-1553 (2021).
[3] Fekri M.H., Banimahd Keivani M., Razavi Mehr M., Akbari-Adergani B., Effective Parameters on Removal of Rhodamine B from Colored Wastewater by Nano polyaniline/Sawdust Composite, J. Mazandaran. Univ. Med. Sci., 29 (177): 166-179 (2019).
[4] Hamidani M., Djerad S., Tifouti L., Reactivity of Cu2O-Cu in the Discoloration of Methylene Blue via a Heterogeneous Fenton-Like Process, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 1502-1511 (2021).
[5] Fekri M. H., Banimahd keivani M., Darvishpour M., Banimahd keivani H., Application of Electroactive  Nano Composite Coated onto Wood Sawdust for the Removal of Malachite Green Dye from Textile Wastewaters, J. Phys. Theor. Chem., 9(2): 95-102 (2012).
[6] Shirzad Taghanaki N., Keramati N., Mehdipour M., Photocatalytic Degradation of Ethylbenzene by Nano  Photocatalyst in Aerogel form Based on Titania, Iran. J. Chem. Chem. Eng.(IJCCE), 40(2): 525-537 (2021).
[7] Di Mauroa A., Cantarella M., Nicotra G., Privitera V., Impellizzeri G., Impellizzeri, G. Low Temperature Atomic Layer Deposition of ZnO: Applications in PhotocatalysisAppl. Catal. B-Environ., 196: 68–76 (2016).
[11] Azimi S., Shirini F.,  Pendashteh A., Advanced Oxidation Process as a Green Technology for Dyes Removal from Wastewater: A Review, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 1467-1489 (2021).
[12] Mohammadi R., Massoumi B., Emamalinasabb B., Eskandarloo H., Cu-doped TiO2-graphene/alginate Nanocomposite for Adsorption and Photocatalytic Degradation of Methylene Blue from Aqueous Solutions, Desal. Wat. Treat., 82: 81–91 (2017).
 [15] Toktam P., Es'haghi Z., Ahmadpour A., Nakhaei A., Optimization of Adsorption Parameters Using Central Composite Design for the Removal of Organosulfur in Diesel Fuel by Bentonite-Supported Nanoscale NiO-WO3, Iran.J. Chem. Chem. Eng. (IJCCE), 41: 808-820 (2022).
[16] Kong M., Chen X.G., Xing K., Park H.J., Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review, Int. J. Food Microbiol., 144: 51–63 (2010).
[18] Yu D., Wu M., Hu Q., Wang L., Lv C., Zhang L., Iron-Based Metal-Organic Frameworks as Novel Platforms for Catalytic Ozonation of Organic Pollutant: Efficiency and Mechanism, J. Hazard. Mater., 367: 456–464 (2019).
[20] Ghasemi S.S., Hadavifar M., Maleki B., Mohammadnia E., Adsorption of Mercury Ions from Synthetic Aqueous Solution Using Polydopamine Decorated SWCNTs,  J. Water Process. Eng., 32: 100965 (2019).
[21] Mohammadi L., Rahdar A., Khaksefidi R., Ghamkhari A., Fytianos G., Kyzas G.Z., Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents,  Polymers., 12: 1313-1321 (2020).
[22] Ren L., Yang Z., Huang L., He Y., Wang H., Zhang L., Macroscopic Poly Schiff Base-Coated Bacteria Cellulose With High Adsorption Performance,  Polymers., 12: 714-728 (2020).
[23] Laurent S., Forge D., Port M., Roch A., Robic C., Elst L., Muller R., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization,  J. Hazard. Mater., 294: 128–136 (2015).
[24] Habibi-Yangjeh A., Shekofteh-Gohari M., Synthesis of Magnetically Recoverable Visible-Light-Induced Photocatalysts by Combination of Fe3O4/ZnO with BiOI and Polyaniline,  Pro. Nat. Sci. Mater. Int., 29: 145–155 (2019).
[25] Liu M., Liu Y., Ge Y., Zhong Z., Wang Z., Wu T., Zhao X., Zu Y., Solubility, Antioxidation, and Oral Bioavailability Improvement of Mangiferin Microparticles Prepared Using the Supercritical Antisolvent Method, Pharmaceutics., 12: 90-105 (2020).
[26]  Belattmania Z.,  Kaidi S., El Atouani S.,  Katif C.,  Bentiss F., Jama C., Reani A., Sabour B., Vasconcelos V., Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main  Alginophyte Species of the Atlantic Coast of Morocco, Molecules., 25: 4335-4343 (2020).
[27] Fekri M. H., Tousi F., Heydari R., Razavi Mehr M., Rashidipour M., Synthesis of Magnetic Novel Hybrid Nanocomposite (Fe3O4@SiO2/Activated Carbon( by a Green Method and Evaluation of Its Antibacterial Potential, Iran. J. Chem. Chem. Eng. (IJCCE), 41: 767-776 (2022).
[28] Salamat S., Mohammadnia E., Hadavifar M., Kinetics and Adsorption Investigation of Malachite Green onto Thiolated Graphene Oxide NanostructuresJ. Wat. Wastewat., 31: 1-11 (2020).
[29] Niu H., Dizhang Z., Meng Y., Cai H., Fast Defluorination and Removal of Norfloxacin by Alginate/Fe@Fe3OCore/shell Structured Nanoparticles, J. Hazard. Mater., 227: 195–203 (2020).
[30] Honga R.Y., Fenga B., Liua G., Wangc S., Li H.Z., Ding J.M., Zhenge Y., Weif D.G., Preparation and Characterization of Fe3O4/polystyrene Composite Particles Via Inverse Emulsion Polymerization, J. Alloys Compd., 476: 612–618 (2009).
[32] Shah R M. T., Balouchb A., Alveroglu E., Sensitive Fluorescence Detection of Ni2+ Ions Using Fluorescein Functionalized Fe3O4 Nanoparticles, J. Mater. Chem. C., 6: 1105-1115 (2018).
[33] Wan S., Huang J., Yan H., Liu K., Size-Controlled Preparation of Magnetite Nanoparticles in the Presence of Graft  Copolymers, J. Mater. Chem., 16: 298–303 (2006).
[34] Ghamkhari A., Mohamadi L., Kazemzadeh S., Zafar M.N., Rahdar A., Khaksefidi R. Synthesis and Characterization of poly(Styrene-Block-Acrylic acid) Diblock Copolymer Modified Magnetite Nanocomposite for Efficient Removal of Penicillin G,  Compos. Part B-Eng., 182: 107643 (2020).
[35] Liang H., Hu X., Preparation of Magnetic Cellulose Nanocrystal -Modified Diatomite for Removal of Methylene Blue from Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 41: 787-798 (2022).
[38] Yang L.,  Tian J.,  Meng J., Zhao R.,  Li C.,  Ma J.,  Jin T., Modification and Characterization of Fe3O4 Nanoparticles for Use in Adsorption of Alkaloids, Molecules, 23: 562-571 (2018).
[39] Bao S.G., Tang L.H., Li K., Ning P., Peng J.H., Guo H.B., Zhu T.T., Liu Y., Highly Selective Removal of Zn(II) Ion From Hot-Dip Galvanizing Pickling Waste with Amino-Functionalized Fe3O4@SiO2 Magnetic Nano-Adsorbent, J. Colloid Interface Sci., 462: 235–242 (2016).
[41] Rahmani A., Zavvar Mousavi H., Fazli M., Effect of Nanostructure Alumina on Adsorption of Heavy Metals, Desalination, 253: 94–100 (2010).
[42] Xu R., Mao J., Peng N., Luo X., Chang C., Chitin/clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes, Carbohyd. Polym., 188: 143–150 (2018).
[45] Wang P.P., Wang L.H., Dong S.J., Zhang G.H., Shi X.J., Xiang C.H., Li, L.L., Adsorption of Hexavalent Chromium By Chitosan/poly(ethylene oxide)/permutit Electrospun Fibers,  New. J. Chem., 42: 17740–17749 (2018).
[46] Mane V. S.,  Mall I. D., Srivastava V. C., Kinetic and Equilibrium Isotherm Studies for the Adsorptive Removal of Brilliant Green Dye from Aqueous Solution by Rice Husk ash, J. Environ.  Manage., 84: 390-400 (2007).
[47] Mohammadi R., Massoumi B., Galandar F., Polyaniline-TiO2/Graphene Nanocomposite: An Efcient Catalyst for the Removal of Anionic Dyes,  Desal. Wat. Treat., 142: 321–330 (2019).
[48] Lam S.W., Soetanto A., Amal R., Self-Cleaning Performance of Polycarbonate Surfaces Coated with Titania Nanoparticles, J. Nanoparticle Res., 11: 1971–1979 (2009).
[49] Ngomsik A. F., Bee A., Talbot D., Cote G., Magnetic Solid–Liquid Extraction of Eu (III), La (III), Ni (II) and Co(II) with Maghemite Nanoparticles, Sep. Purif. Technol., 86: 1-8 (2012).
[50] Ribeiro R.S., Fathy N.A., Attia A.A., Silva A.M.T., Faria J.L., Gomes H.T., Activated Carbon Xerogels for the Removal of the Anionic Azo Dyes Orange II and Chromotrope 2R by Adsorption and Catalytic Wet Peroxide Oxidation, Chem. Eng. J., 195: 112-121 (2012).
[52] Ahmadi S., Igwegbe C.A., Rahdar S., The application of Thermally Activated Persulfate for Degradation of Acid Blue 92 in Aqueous Solution, Int. J. Ind. Chem., 10: 1–12 (2019).
[53] Bendjama H., Merouani S., Hamdaoui O., Bouhelassa M., Using Photoactivated Acetone for the Degradation of Chlorazol Black in Aqueous Solutions: Impact of Mineral and Organic Additives, Sci. Total. Environ., 653: 833–838 (2019).
[54] Singh S., Singh P.K., Mahalingam H., Novel floating Ag+ - Doped TiO2 /Polystyrene Photocatalysts for the Treatment of Dye Wastewater, Ind. Eng. Chem. Res., 53: 16332–16340 (2014).
[55] Idris A., Ismail N.S.M., Hassan N., Misran E., Ngomsik A.F., Synthesis of Magnetic Alginate Beads Based on Maghemite Nanoparticles for Pb (II) Removal in Aqueous Solution, J. Ind. Eng. Chem., 18: 1582–1589 (2012).