Dye-Sensitized Solar Cells Based on Electrospun Ag-doped TiO2/PVA Nanofibers

Document Type : Research Article


1 Department of Chemical Engineering, Can Tho University–3/2 Street, Ninh Kieu District, Can Tho City, VIETNAM

2 School of Chemical Engineering, Hanoi University of Science and Technology, Dai Co Viet, Hanoi, 10000, Vietnam; Ministry of Education and Training, Ha Noi City, 570000, VIETNAM

3 Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Ninh Kieu District, Can Tho City, VIETNAM


Ag-doped TiO2/PVA nanofibers have many potential applications as a photoanode of dye-sensitized solar cells (DSSCs). In this study, we report the fabrication of DSSCs based on Ag-doped TiO2/PVA nanofibers as photoanode, graphene oxide as a Pt-free counter electrode catalyst, and natural dye sensitizer. Ag-doped TiO2/PVA nanofibers were fabricated using an electrospinning method. The electrospun nanofibers were characterized by a scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The nanoparticle content of lower 100 mg/mL, and the electrospun nanofibers were uniform. Based on the results of the characterization analysis, the electrospun Ag-doped TiO2/PVA nanofibers were successfully prepared with diameters from 100 to 400 nm. They were used as photoanodes of DSSCs using a natural dye sensitizer extracted from the leaf of the magenta plant. The highest power conversion efficiency of DSSCs with Ag-doped TiO2/PVA nanofibers was 0.6% from the J-V curves. This approach would be a potential application for fabricating a solar cell based on composite fiber, Pt-free catalyst, and natural dye sensitizer.


Main Subjects

[3] Van-Pham D.-T., Vien V.P., Nguyen T.Q.H., Nguyen H.N., Duong T.T.N., Ta N.D., Ngo T.N.M., Tran T.B.Q., Doan V.H.T., Fabrication of Electrospun BaTiO3/chitosan/PVA Nanofibers and Application for Dye-Sensitized Solar Cells, IOP Conf. Ser.: Earth Environ. Sci., 947 (1): 012017 (2021).
[4] Mahmood A., Khan S.U.-D., Rana U.A., Theoretical Designing of Novel Heterocyclic Azo Dyes for Dye Sensitized Solar Cells, J. Comput. Electron., 13(4): 1033-41 (2014).
[5] Mahmood A., HussainTahir M., Irfan A., Khalid B., Al-Sehemi A.G., Computational Designing of Triphenylamine Dyes with Broad and Red-Shifted Absorption Spectra for Dye-Sensitized Solar Cells Using Multi-Thiophene Rings in π-Spacer, Bull. Korean Chem. Soc., 36(11): 2615-20 (2015).
[7] Mejica G.F.C., Unpaprom Y., Balakrishnan D., Dussadee N., Buochareon S., Ramaraj R., Anthocyanin Pigment-Based Dye-Sensitized Solar Cells with Improved pH-Dependent Photovoltaic Properties, Sustain. Energy Technol. Assess., 51: 101971 (2022).
[8] Shahzad N., Lutfullah, Perveen T., Pugliese D., Haq S., Fatima N., Salman S.M., Tagliaferro A., Shahzad M.I., Counter electrode Materials Based on Carbon Nanotubes for Dye-Sensitized Solar Cells, Renew. Sust. Energ. Rev., 159: 112196 (2022).
[9] Kabir F., Manir S., Bhuiyan M.M.H., Aftab S., Ghanbari H., Hasani A., Fawzy M., De Silva G.L.T., Mohammadzadeh M.R., Ahmadi R., Abnavi A., Askar A.M., Adachi M.M., Instability of Dye-Sensitized Solar Cells Using Natural Dyes And Approaches to Improving Stability – An Overview, Sustain. Energy Technol. Assess., 52: 102196 (2022).
[10] Kusumawati Y., Hutama A.S., Wellia D.V., Subagyo R., Natural resources for Dye-Sensitized Solar Cells, Heliyon, 7 (12): e08436 (2021).
[11] Aung S.H., Hao Y., Oo T. Z., Boschloo G., Kinetic Study of Carminic Acid and Santalin Natural Dyes in Dye-Sensitized Solar Cells, J. Photochem. Photobiol. A: Chem., 325: 1-8 (2016).
[12] Wang X., He G., Fong H., Zhu Z., Electron Transport and Recombination in Photoanode of Electrospun TiO2 Nanotubes for Dye-Sensitized Solar Cells, J. Phys. Chem. C, 117(4): 1641-46 (2013).
[13] Zou X., Silva R., Huang X., Al-Sharab J.F., Asefa T., A Self-Cleaning Porous TiO2–Ag Core–Shell Nanocomposite Material for Surface-Enhanced Raman Scattering, Chem. Commun., 49 (4): 382-84 (2013).
[14] Wu W.-Y., Hsu C.-F., Wu M.-J., Chen C.-N., Huang J.-J., Ag–TiO2 Composite Photoelectrode for Dye-Sensitized Solar Cell, Appl. Phys. A, 123(5): 357 (2017).
[15] Solaiyammal T., Muniyappan S., Keerthana B.G.T., Nemala S.S., Bhargava P., Murugakoothan P., Green Synthesis of Ag and the Effect of Ag on the Eficiency of TiO2 Based Dye Sensitized Solar Cell, J. Mater. Sci. - Mater. Electron., 28 (20): 15423-34 (2017).
[16] Rho W.-Y., Kim H.-S., Chung W.-J., Suh J.S., Jun B.-H., Hahn Y.-B., Enhancement of power Conversion Efficiency with TiO2 Nanoparticles/Nanotubes-Silver Nanoparticles Composites in Dye-Sensitized Solar Cells, Appl. Surf. Sci., 429: 23-28 (2018).
[17] Xu J., Wang G., Fan J., Liu B., Cao S., Yu J., g-C3N4 Modified TiO2 Nanosheets with Enhanced Photoelectric Conversion Efficiency in Dye-Sensitized Solar Cells, J. Power Sources, 274: 77-84 (2015).
[18] Ammar A.M., Mohamed H.S.H., Yousef M.M.K., Abdel-Hafez G.M., Hassanien A.S., Khalil A.S.G., Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes, J. Nanomater., 2019: 1867271 (2019).
[19] Van-Pham D.-T., Phan T.Y.N., Tran V.B.L., Nguyen C.-N., Le M.N., Tran T.B.Q., Le T.C.T., Ngo T.N.M., Doan V.H.T., Electrospun Fe-doped TiO2/chitosan/PVA Nanofibers: Preparation and Study on Photocatalytic and Adsorption Properties, Mater. Lett., 326: 132930 (2022).
[20] Andoshe D.M., Choi S., Shim Y.-S., Lee S.H., Kim Y., Moon C.W., Lee S.Y., Kim T., Park H.K., Lee M.G., A Wafer-Scale Antireflective Protection Layer of Solution-Processed TiO2 Nanorods for High Performance Silicon-Based Water Splitting Photocathodes, J. Mater. Chem. A, 4 (24): 9477-85 (2016).
[22] Zheng L., Yu X., Long M., Li Q., Humic Acid-Mediated Visible-Light Degradation of Phenol on Phosphate-Modified and Nafion-Modified TiO2 Surfaces, Chinese J. Catal., 38 (12): 2076-84 (2017).
[23] Wen J., Li X., Liu W., Fang Y., Xie J., Xu Y., Photocatalysis Fundamentals and Surface Modification of TiO2 Nanomaterials, Chinese J. Catal., 36 (12): 2049-70 (2015).
[24] Lim S.P., Lim Y.S., Pandikumar A., Lim H.N., Ng Y.H., Ramaraj R., Bien D.C.S., Abou-Zied O.K., Huang N.M., Gold–silver@ TiO2 Nanocomposite-Modified Plasmonic Photoanodes for Higher Efficiency Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 19(2): 1395-407 (2017).
[25] Gupta A.K., Srivastava P., Bahadur L., Improved Performance of Ag-Doped TiO2 Synthesized by Modified Sol–Gel Method as Photoanode of Dye-Sensitized Solar Cell, Appl. Phys. A, 122(8): 1-13 (2016).
[27] Pakdel E., Daoud W.A., Sun L., Wang X., Reprint of: Photostability of Wool Fabrics Coated with Pure and Modified TiO2 Colloids, J. Colloid Interface Sci., 447: 191-201 (2015).
[28] Saud P.S., Pant B., Twari A.P., Ghouri Z.K., Park M., Kim H.-Y., Effective Photocatalytic Efficacy of Hydrothermally Synthesized Silver Phosphate Decorated Titanium Dioxide Nanocomposite Fibers, J. Colloid Interface Sci., 465: 225-32 (2016).
[29] Wu L., Yu Y., Song L., Zhi J., M/TiO2 (M= Au, Ag) Transparent Aqueous Sols and its Application on Polymeric Surface Antibacterial Post-Treatment, J. Colloid Interface Sci., 446: 213-17 (2015).
[33] Mozaffari S.A., Saeidi M., Rahmanian R., Photoelectric Characterization of Fabricated Dye-Sensitized Solar Cell Using Dye Extracted from Red Siahkooti Fruit as Natural Sensitizer, Spectrochim. Acta, Pt. A: Mol. Biomol. Spectrosc., 142: 226-31 (2015).
[34] Maurya I.C., Srivastava P., Bahadur L., Dye-Sensitized Solar Cell Using Extract from Petals of Male Flowers Luffa Cylindrica L. as a Natural Sensitizer, Opt. Mater., 52: 150-56 (2016).
[36] Sujiono E.H., Zabrian D., Dahlan M., Amin B., Agus J., Graphene Oxide Based Coconut Shell Waste: Synthesis by Modified Hummers Method and Characterization, Heliyon, 6(8): e04568 (2020).
[37] He J., Du Y.-e., Bai Y., An J., Cai X., Chen Y., Wang P., Yang X., Feng Q., Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity, Molecules, 24(16): 2996 (2019).
[38] Soler-Illia G.d.A., Louis A., Sanchez C., Synthesis and Characterization of Mesostructured Titania-Based Materials Through Evaporation-Induced Self-Assembly, Chem. Mater., 14 (2): 750-59 (2002).
[39] Yu J.C., Zhang L., Zheng Z., Zhao J., Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity, Chem. Mater., 15 (11): 2280-86 (2003).
[40] Rao T.N., Babji P., Ahmad N., Khan R.A., Hassan I., Shahzad S.A., Husain F.M., Green Synthesis and Structural Classification of Acacia Nilotica Mediated-Silver Doped Titanium Oxide (Ag/TiO2) Spherical Nanoparticles: Assessment of its Antimicrobial and Anticancer Activity, Saudi J. Biol. Sci., 26 (7): 1385-91 (2019).
[41] Dhafina W.A., Salleh H., Daud M.Z., Ghazali M.S.M., Low Cost Dye-Sensitized Solar Cells Based on Zinc Oxide and Natural Anthocyanin Dye From Ardisia Elliptica Fruits, Optik, 172: 28-34 (2018).
[42] Lin S.-J., Lee K.-C., Wu J.-L., Wu J.-Y., Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells, Sol. Energy., 86 (9): 2600-05 (2012).
[43] Zhang X., Thavasi V., Mhaisalkar S., Ramakrishna S., Novel Hollow Mesoporous 1D TiO2 Nanofibers as Photovoltaic and Photocatalytic Materials, Nanoscale, 4 (5): 1707-16 (2012).
[44] Swarnkar A., Sahare S., Chander N., Gangwar R.K., Bhoraskar S., Bhave T.M., Nanocrystalline Titanium Dioxide Sensitised with Natural Dyes for Eco-Friendly Solar Cell Application, J. Exp. Nanosci., 10 (13): 1001-11 (2015).
[45] Chang H., Lo Y.-J., Pomegranate Leaves and Mulberry Fruit as Natural Sensitizers for Dye-Sensitized Solar Cells, Sol. Energy., 84 (10): 1833-37 (2010).