Influence of Welding on the Dissolution of API- 5 L X60 in Simulated Soil Solution- Corrosion Protection by Phosphoric Compound- DFT Calculations

Document Type : Research Article

Authors

1 USTHB, Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry El-Alia Bab-Ezzouar Algiers, ALGERIA

2 Research Center in Industrial Technologies (CRTI), Cheraga Algiers, ALGERIA

Abstract

The present work aims to examine the susceptibility to soil corrosion of base metal (BM) and heat affected zone (HAZ) of API L5 X60 steel pipeline, and to assess the ability of Di-(2-ethylhexyl) phosphoric acid (D2EHPA) to inhibit the corrosion of the two samples. An overview of the literature reported almost no studies related to the corrosion inhibition of pipeline in soil solutions. The experiments were carried out in a simulated soil solution (NS3) using electrochemical methods, a thermodynamic approach, and surface analysis. The results demonstrated that D2EHPA is a potent inhibitor for both steels in the soil solution. Indeed, its efficiency increased with the increase of its concentration, exceeding 98 % at the optimal concentration, even for HAZ which is less resistant to corrosion than BM, due to the coarsening  of α-ferrite grains. Polarization curves showed that D2EHPA acts as an anodic-type inhibitor, and the calculated standard free adsorption energy values deduced by Langmuir isotherm indicated that the phosphoric compound adsorbs via electrostatic and chemical bindings. The stability of the adsorbed D2EHPA layer, on both the surfaces of BM and HAZ that were immersed in the inhibitive solution for 168 h, has been proven by EIS studies. Moreover, the effective adsorption of D2EHPA at the steel/SN3 interface is clearly highlighted by Scanning Electron Microscopy (SEM) and FT-IR spectra. Theoretical DFT calculations were also performed to determine some electronic properties of the studied molecule and to find a correlation between the inhibitive effect and the electronic structure of the neutral form and the deprotonated form of D2EHPA.

Keywords

Main Subjects


[1] Ren C.Q., Xian N., Wang X., Liu L., Zheng Y.P., Susceptibility of Welded X80 Pipeline Steel to Corrosion in Simulated Soil Solution, Corros. Eng. Sci. Tech., 47: 441-445 (2012).
[2] Cui Y, Lundin C.D., Evaluation of Initial Corrosion Location in E316L Austenitic Stainless Steel Weld Metals, Mater. Lett., 59: 1542–1546 (2005).
[3] Azevedo C. R. F., Failure Analysis of a Crude Oil Pipeline, Eng. Fail. Anal., 14: 978– 994 (2007).      
[4] Zhang C., Cheng Y. F., Corrosion of Welded X100 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 19: 834–840 (2010).      
[5] Alves V.A., Brett C.M.A., Cavaleiro A., Influence of Heat Treatment on The Corrosion of High Speed Steel, J. Appl. Electrochem, 31: 65–72 (2001).       
[6] Zhang G.A., Cheng Y.F., Micro-Electrochemical Characterization of Corrosion of Welded X70 Pipeline Steel in Near-Neutral pH Solution, Corros. Sci., 51: 1714–1724 (2009).      
[7] Chaves I.A., Melchers R.E., Pitting Corrosion in Pipeline Steel Weld Zones, Corros. Sci., 53: 4026–4032 (2011).      
[8] Mohammadi F., Eliyan F.F., Alfantazi A., Corrosion of Simulated Weld HAZ of API X-80 Pipeline Steel, Corros. Sci., 63: 323–333 (2012).      
[9] Durr C.L., Beavers J.A., “Techniques for Assessment of Soil Corrosivity”, Corros. NACE Intern., (1998).
[10] Noor A.E., Al-Moubaraki H.A., Influence of Soil Moisture Content on the Corrosion Behavior of X60 Steel in Different Soils, Arab. J. Sci. Eng., 2014, 39: 5421-5435 (2014).      
[11] Lins V.F.C., Ferreira M.L.M., Saliba P.A., Corrosion Resistance of API X52 Carbon Steel in Soil Environment, J. Mater Res. Tech., 1: 161–166 (2012).
[12] Lim K.S., Nordin Y., Siti Rabeah O., Siti Nor F.,   Norhazilan M.N., The Relationship between Soil Resistivity and Corrosion Growthin Tropical Region, J. Corros. Sci. Eng., 54: 1-11 (2013).       
[13] Shwethambika P., Ishwara Bhat J., Matured Theobroma Cocoa Pod Extracts as Green Inhibitor for Acid Corrosion of Aluminium, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 906-919 (2021)
 [14]   Kartsonakis I.A., Stamatogianni P., Karaxi E.K., Charitidis C.A., Comparative Study on the Corrosion   Inhibitive Effect of 2-Mecraptobenzothiazole and Na2HPO4 on Industrial Conveying API 5L X42 Pipeline Steel, Appl. Sci., 10: 290-327 (2020).     
 [15]    Kalyn T., Poberezhny L., Popovych P., Rudiak Y., Korol O., Poberezhna L., Evaluation of the Green Inhibitor Effect on the Corrosion of Pipeline Steel in NS4 Medium, Proc. Stru. Integr., 36: 313–317 (2022).
[16] Tristijanto H., Ilman M.O., Iswanto P.T., Corrosion Inhibition of Welded of X – 52 Steel Pipelines by Sodium Molybdate in 3.5% NaCl Solution, Egypt. J.  Pet., 29: 155-162 (2020).    
[17]    Slimane M., Kellou F., Kellou-Tairi S., Electrostatic Adsorption of Hexamethylenetetramine as a Corrosion Inhibitor for FeTi1.88C2.35 Cast Iron in Electrolytic Acid Solution, Res. Chem. Intermed., 41: 8571–8590 (2015).
[18]    Noorollahy Bastam N., Hafizi Atabak H. R., Atabaki F., Radvar M., Jahangiri S., Electrochemical Measurements for the Corrosion Inhibition of Mild Steel in 0.5 M HCl using Poly(Epichlorohydrin) Derivatives, Iran. J. Chem. Chem. Eng., 39 (4): 113-125 (2020).
 [19] Bashir S., Sharma V., Lgaz H., Chung I.M., Singh A., Kumar A., The Inhibition Action of Analgin on the Corrosion of Mild Steel in Acidic Medium: A Combined Theoretical and Experimental Approach, J. Mol. Liq., 263: 454-462 (2018).
[20] Akbarzade K., Danaee I., Nyquist Plots Prediction using Neural Networks in Corrosion Inhibition of Steel by Schiff base, Iran. J. Chem. Chem. Eng., 37(3): 135-143 (2018)
[21] Bashir S., Lgaz H., Chung I.M., Kumar A., Potential of Venlafaxine in the Inhibition of Mild Steel Corrosion In HCl: Insights from Experimental and Computational Studies, Chem. Pap., 73(9): 2255-2264 (2019).
[22] Jafari H., Mohsenifar F., Sayin K., Effect of Alkyl Chain Length on Adsorption Behavior and Corrosion Inhibition of Imidazoline Inhibitors, Iran. J. Chem. Chem. Eng., 37(5): 85–103 (2018).
[23] Bhuvaneswari T.K, Jeyaprabha C., Arulmathi P., Corrosion Inhibition of Mild Steel in   Hydrochloric Acid by Leaves Extract of Tephrosia Purpure, J. Adhes. Sci. Technol., 34(22): 2424-2447 (2020).
[24] Vazquez A.E., Resendiz L.A.L et al., Corrosion Inhibition Assessment on API 5L X70 Steel by Preussomerin G Immersed in Saline and Saline Acetic, J. Adhes. Sci. Technol., 35(8): 873-899 (2020).
[25] Aljebory   R.Z.J., Al-Saadi   F.A.J., Husseini   M.D.M.,  Drugs as Corrosion Inhibitors for the Environment– A Review, Al-Kufa University Journal for Biology., 5: 100227 (2022).
[26] Wranglen G., “An Introduction to Corrosion and Protection of Metals”, Chapman and Hall, New York(1985).
[27]    Hluchan V., Wheeler B L., Hackerman N., Amino Acids as Corrosion Inhibitors in Hydrochloric Solutions, Mater. Corros., 39: 512-517 (1988).
[28] Karthik B.B., Selvakumar P., Thangavelu C., Phosphonic  Acids Used  as Corrosion Inhibitors-A review, Asian. J. Chem., 24: 3303-3308 (2012).
[30] Elmi S.,  Foroughi M.M., Dehdab M., Shahidi Z.M., Computational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase, Iran. J. Chem. Chem. Eng, 38(1): 185-200 (2019).
[32] Idir B., Kellou-Kerkouche F., Experimental and Theoretical Studies on Corrosion Inhibition Performance of Phenanthroline for Cast Iron in Acid Solution, J. Electrochem. Sci. Technol., 9: 260-275 (2018).
[33] Parkins R.N., Blanchard Jr W.K., Delanty B.S., Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH, Corrosion, 50: 394–408 (1994).
[35] Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648-5652 (1993)
[36] Becke A.D., A New Mixing of Hartree–Fock and Local Density‐Functional Theories, J. Chem. Phys., 98: 1372-1377 (1993).
[37] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy formula into a Functional of the Electron Density, Phys. Rev. B. Condens Matter, 37: 785- 789 (1988).
[38] Miehlich B., Savin A., Stolt H., Preuss H., Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 157: 200-206 (1989).
[39] Petersson G.A., Al-Laham M.A., A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms, J. Chem. Phys., 94: 6081-6090 (1991).
[40] Petersson G.A, Bennett A., Tensfeldt T.G., Al-Laham M.A., Shirley W.A., Mantzaris J., A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements, J. Chem. Phys., 89: 2193-2218 (1988).
[41] Frisch M.J., Trucks G.W., Et al., Gaussian 03. Revision A.1. Gaussian Inc, Pittsburgh. P. A (2003).
[42] Fuentealba P., Cardenas C., Density Functional Theory of Chemical Reactivity, Chem. Modell., 11: 151-174 (2014).
[43] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem Rev., 103: 1793-1874 (2003).
[44] Parr R.G., Pearson R.G., Absolute Hardness, Companion Parameter to Absolute Electronegativity, J. Am. Chem.Soc., 105: 7512-7516 (1983).
[45] Parr R.G, Szentpaly L., Liu S., Electrophilicity Index, J. Am. Chem. Soc., 121: 1922- 1924 (1999).
[46] Chattaraj P.K., Sarkar U., Roy D.R., Electrophilicity Index, Chem. Rev., 106: 2065– 2091 (2006).
[47] Pearson R.G., Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem., 27: 734-740 (1988).
[48] Madkour L.H., Kaya S., Kaya C., Guo L., Quantum Calculations Molecular Dynamics Simulation and Experimental Studies of Using Some Azo Dys as Corrosion Inhibitors for Iron, J. Tai. Inst. Chem. Eng., 68: 461-480 (2016).
[49] Ashby M. F., "Choix des Matériaux en Concéption Mécanique. Dunod (3°Ed.)", Techniques et Ingénierie, (2012).
[50] De Sena R.A., Bastos I.N., Platt G.M., Theoretical and Experimental Aspects of the Corrosivity of    Simulated Soil Solutions, ISRN Chemical Engineering, International Scholarly Research Notices, 2012: 103715 (2012).
[51] Bueno A.H., Gomes J.A., Environmentally Induced Cracking of API Grade Steel in Near-Neutral pH Soil, J. Braz. Soc. Mech. Sci. Eng., 31(2): 97-104 (2009).
[52] Wahdan M.H., Hermas A. A., Morad M. S., Corrosion Inhibition of Carbon-steels by          Propargyltriphenylphosphonium Bromide in H2SO4 Solution, Mater. Chem. Phys., 76: 111–118 (2002).
[53] Cleary H. J., Greene N. D., Corrosion Properties of Iron and Steel, Corros. Sci., 7(2): 821-831 (1967)
[54] Felhősi I., Keresztes Z., Kármán F. H., Mohai M., Bertóti I., Kálmán E., Effects of Bivalent Cations on Corrosion Inhibition of Steel by 1-Hydroxyethane-1,1-Diphosphonic Acid, J. Electrochem. Soc., 146(3): 961-969 (1999).
[55] Kálmán E., Várhegyi B., et al., Corrosion Inhibition by 1-Hydroxy-Ethane-1, 1- Diphosphonic Acid: An Electrochemical Impedance Spectroscopy Study, J. Electrochem Soc., 141(12): 3357-3360 (1994).
[58] Mameri S., Boughrara D., Chopart J., Kadri A., Electrochemical Corrosion Behavior of API 5L X52 Pipeline Steel in Soil Environment, Anal. Bioanal. Electrochem., 13: 239-263 (2021)
[59] Bommersbach P., Dumont C.A., Millet J.P., Normand B., Hydrodynamic Effect on the Behaviour of a Corrosion Inhibitor Film: Characterization by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 51(19): 4011-4018 (2006).
[60] Tan B., Zhang S., Cao X.,   Fu A., Guo L.,   Marzouki R., Li W., Insight into the Anti-Corrosion   Performance of Two Food Flavors as Eco-Friendly and Ultra-High Performance Inhibitors for Copper in Sulfuric Acid Medium, J. Colloid. Interface. Sci., 609: 838–851 (2022).
[62] Brug G.J., Van Den Eeden A.L.G., Sluyters-Rehbach M., et al., The Analysis of Electrode Impedances Complicated by the Presence of a Constant, J. Electroanal. Chem. Interfacial. Electrochem, 176: 275–295 (1984).
[64] Khan G., Newaz K.M.S., Basirun W.J., et al., Application of Natural Product Extracts as Green Inhibitors for Metals and Alloys in Acid Pickling Processes, Inter. J. Electrochem. Sci., 10(8): 6120-6134 (2015).
[65] Macdonald J.R., Impedance Spectroscopy and its use in Analyzing the Steady-State AC Response of Solid and Liquid Electrolytes, J. Electroanal Chem. Interfacial Electrochem, 223: 25-50 (1987).
[66] Hsu C.H., Mansfeld F., Technical note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance, Corrosion-Houston Tx, 57(9): 747-748 (2001).
[67] Abd- El Rehim S.S., Ibrahim M.A.M., Khalid K.F., The Inhibition of 4-(2’-amino-5’-methylphenylazo) Antipyrine on Corrosion of Mild Steel in HCl Solution, Mater. Chem. Phys., 70: 268-273 (2001).
[69] Asan A., Kabasakaloglu M., Isiklan M., Kilic Z., Corrosion Inhibition of Brass in Presence of Terdentate Ligands in Chloride Solution, Corros. Sci., 47: 1534-1544 (2005).
[70] Kadhim A., Al-Okbi K., Jamil D.M., et al., Experimental and Theoretical Studies of Benzoxazines Corrosion Inhibitors, Results. Phys., 7: 4013–4019 (2017).
[71] Ashassi-Sorkhabi H., Chabani B., Aligholipour B., Seifzadeh D., The Effect of Some Shiff Bases on the Corrosion of Aluminum in Hydrochloric Acid Solution, Appl. Surf. Sci., 252: 4039-4047 (2006).
[72] Musa A.Y., Kadhum A.A.H., Mohamad A.B., Rahoma A.A.B., Mesmari H., Electrochemical and Quantum Chemical Calculations on 4, 4-dimethyloxazolidine-2- thione as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid, J. Mol. Struct., 969: 233-237 (2010).
[74] Solomon M.M., Umoren S.A., Udosoro I.I., Udoh A.P., Inhibitive and Adsorption Behavior of Carboxymethyl Cellulose on MS Corrosion in Sulphuric Acid Solution, Corros. Sci., 52(4): 1317-1325 (2010).
[75] Fuchs-Godec R., Dolecek V., A Effect of Sodium Dodecylsufate on the Corrosion of Copper in Sulphuric Acid Media, Colloids. Surf. A., 244: 73–76 (2004).
[76] Zhang Q., Hua Y., Corrosion Inhibition of Aluminum in Hydrochloric Acid Solution by Alkylimidazolium Ionic Liquids, Mater. Chem. Phys., 119: 57–64 (2010).
[78] Bonnel A., Dabosi F., Deslouis C., Dupart M., Keddam M., Trabolet B., Corrosion Study of a Carbon Steel in Neutral Chloride Solutions by Impedance Techniques, J. Electrochem. Soc., 130: 753-761 (1983).
[79] Ashassi-Sorkhabi H., Ghalebsaz-Jeddi N., Effect of Ultrasonically Induced Cavitation on Inhibition Behavior of Polyethylene Glycol on Carbon Steel Corrosion, Ultrason. Sonochem., 13(2): 180-188 (2006).
[80] Lopez D.A., Schreiner W.H., De Sanchez S.R., Simson S.N., The Influence of Carbon Steel Microstructure on Corrosion Layers. An XPS and SEM Characterization, Appl. Surf. Sci., 207(1-4): 69-85 (2003).
[81] Chaouiki A., Lgaz H., Salghi R., et al., Inhibitory Effect of a new Isoniazid Derivative as an Effective Inhibitor for Mild Steel Corrosion in 1.0 M HCl: Combined Experimental and Computational Study, Res. Chem. Intermed., 46: 2919-2950 (2020).       
[82] Lukovits I., Kalman E., Zucchi F., Corrosion Inhibitors-Correlation Between Electronic Structure and Efficiency, Corrosion, 57(1): 3-8 (2001).
[83] Issa R.M., Awad M.K., Atlam F.M., Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils, App. Surf. Sci., 255(5): 2433- 2441 (2008).
[86]   Nakamoto K., Ferraro J.R., Mason G.W., Vibrational Spectra and Normal Coordinate Treatment of Bis(2-ethylhexyl) Hydrogen Phosphate, Applied Spectroscopy, 23: 521-527 (1969).    
[88] Rajeswari V., Kesavan D., Gopiramanb M., Viswanathamurthi P., Physicochemical Studies of Glucose, Gellan Gum, and Hydroxypropyl Cellulose- Inhibition of Cast Iron Corrosion, Carbohydr. Polym, 95: 288- 294 (2013).
[89] Xometl O.O.,   Álvarez E.A.,   et    al., Synthesis and   Corrosion Inhibition Mechanism of Ammonium-Based Ionic Liquids on API 5L X60 Steel in Sulfuric Acid Solution, J. Adhes. Sci. Tech., (2017).