Flow and Heat Transfer Analysis of Nanofluid (CuO/water) Subject to Inclined Magnetic Field and Thermal Radiation: A Numerical Approach

Document Type : Research Article

Authors

1 Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan-60800, PAKISTAN

2 Department of Basic Science and Humanities, Muhammad Nawaz Sharif University of Engineering and Technology, Multan 60000, PAKISTAN

Abstract

Nanofluids play an important role in order to augment of the heat transfer characteristics in many energy systems. As compared to usual fluids, nanofluids comprise better physical strength and thermal conductivity. Our aim in studying this work is to numerically interpret the flow and heat transfer features of copper oxide (CuO) nanoparticles in the coexistence of thermal radiation and inclined magnetic fields. The model equations are first simplified by the similarity transformations and then finite difference discretization is used to apply the numerical technique known as the successive over-relaxation method. We have mainly examined that how much the thermal radiation and inclined magnetic field affect the nanofluid flow. The impacts of involved parameters are overlooked with the help of tabular and graphical representations. The consequences evidently point out that the effect of inclination is to devaluate the heat transfer and elevate the skin friction on the surface. The thermal radiation phenomenon is responsible for an increase in the temperature.

Keywords

Main Subjects


[1] Choi S. U., Eastman J.A., “Enhancing Thermal Conductivity of Fluids with Nanoparticles”, (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States), (1995).
[2] Cui J., Munir S., Farooq U., Rabie M.E.A., Muhammad T., Razzaq R., On Numerical Thermal Transport Analysis of Three-Dimensional Bioconvective Nanofluid Flow, Journal of Mathematics, (2021).
[3] Srinivasulu T., Goud B. S., Effect of Inclined Magnetic Field on Flow, Heat and Mass Transfer of Williamson Nanofluid over a Stretching Sheet, Case Studies in Thermal Engineering, 23: 100819 (2021).
[4] Kolsi L., Abbasi A., Alqsair U.F., Farooq W., Omri M., Khan S.U., Thermal Enhancement of Ethylene Glycol Base Material with Hybrid Nanofluid for Oblique Stagnation Point Slip Flow, Case Studies in Thermal Engineering, 28: 101468 (2021).
[5] Ahmad S., Yousaf M., Khan A., Zaman G., Magnetohydrodynamic Fluid Flow and Heat Transfer over a Shrinking Sheet under the Influence of Thermal Slip, Heliyon, 4(10): e00828 (2018).
[6] Mohyud-Din S.T., Khan U., Ahmed N., Rashidi, M.M., A Study of Heat and Mass Transfer on Magnetohydrodynamic (MHD) flow of Nanoparticles, Propulsion and Power Research, 7(1): 72-77 (2018).
[7] Shehzad S. A., Abdullah Z., Alsaedi A., Abbasi F. M., Hayat T., Thermally Radiative Three-Dimensional Flow of Jeffrey Nanofluid with Internal Heat Generation and Magnetic Field, Journal of Magnetism and Magnetic Materials, 397: 108-114 (2016).
[8] Lv Y.P., Shaheen N., Ramzan M., Mursaleen M., Nisar K.S., Malik M. Y., Chemical Reaction and Thermal Radiation Impact on a Nanofluid Flow in a Rotating Channel with Hall Current, Scientific Reports, 11(1): 1-17 (2021). 
[9] Khader M., Babatin M. M., Megahed A. M., Numerical Study of Thermal Radiation Phenomenon and Its Influence on Amelioration of the Heat Transfer Mechanism through MHD Non-Newtonian Casson Model, Coatings, 12(2):208 (2022).
[10] Chamkha A.J., Armaghani T., Mansour M.A., Rashad A.M., Kargarsharifabad H., MHD Convection of an Al2O3–Cu/Water Hybrid Nanofluid in an Inclined Porous Cavity with Internal Heat Generation/Absorption, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 936-956 (2022).
[11] Chamkha A. J., Mansour M. A., Rashad A. M., Kargarsharifabad H., Armaghani T., Magnetohydrodynamic Mixed Convection and Entropy Analysis of Nanofluid In Gamma-Shaped Porous Cavity, J. Thermophysics Heat Trans., 34(4): 836-847 (2020).
[12] Kargarsharifabad H., Experimental and Numerical Study of Natural Convection of Cu-Water Nanofluid in a Cubic Enclosure under Constant and Alternating Magnetic Fields, Int. Commu. Heat Mass., 119: 104957 (2020). 
[13] Kargarsharifabad H., Optimization of Arrangement of Conducting Fins and Insulated Obstacles Inside a Cavity: the Couple of Numerical Solutions and Genetic Algorithm Methods, J. Thermal Anal. Calorim., 147(1): 421-433 (2022).
[14] Kargarsharifabad H., Falsafi M., Numerical Study of Ferrofluid Forced Convection Heat Transfer in Tube with Magnetic Field, Comput. Methods Eng., 34(1): 11-25 (2015).
        10.18869/acadpub.jcme.34.1.11
[15] Alagumalai A., Qin C., Vimal K.E.K., et al., Conceptual Analysis Framework Development to Understand Barriers of Nanofluid Commercialization, Nano Energy, 92: 106736 (2022).
[16] Rashidi M.M., Sadri M., Sheremet M., Numerical Simulation of Hybrid Nanofluid Mixed Convection
in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme, Nanomaterials, 11(9): 2250 (2021).
[17] Turkyilmazoglu M., MHD Natural Convection in Saturated Porous Media with Heat Generation/ Absorption and Thermal Radiation: Closed-Form Solutions, Arch. Mech., 71(1): 49-64 (2019).
        DOI: 10.24423/aom.3049
[18] Turkyilmazoglu M., Radially Expanding/Contracting and Rotating Sphere with Suction, Int. J. Numer. Method H., (2022).
        DOI 10.1108/HFF-01-2022-0011
[19] Turkyilmazoglu M., Flow and Heat over a Rotating Disk Subject to a Uniform Horizontal Magnetic
Field, Journal Zeitschrift Für Naturforschung A., (2022).
        DOI: 10.1515/ZNA-2021-0350
[20] Riaz A., Abbas T., Zeeshan A., Doranehgard M.H., Entropy Generation and MHD Analysis of a Nanofluid with Peristaltic Three Dimensional Cylindrical Enclosures, Int. J. Numer. Method H., 31(8): 2698-2714 (2021).
[21] Riaz A., Ellahi, R., Sait S. M., Muhammad T., Magnetized Jeffrey Nanofluid with Energy Loss in Between an Annular Part of Two Micro Non-Concentric Pipes, Energy Sources, Part A: (2020).
[22] Ijaz M., Ayub M., Zubair M., Riaz A., On Stratified Flow of Ferromagnetic Nanofluid with Heat Generation/Absorption, Phys. Scr., 94(4): 045206 (2019).
[23] Vaidya H., Rajashekhar C., Prasad K.V., et al., MHD Peristaltic Flow of Nanofluid in a Vertical Channel With Multiple Slip Features: An Application to Chyme Movement, Biomech, Model Mechanobiol., 20: 1047–1067 (2021).
[24] Sheikholeslami M., Numerical Investigation of Solar System Equipped with Innovative Turbulator and Hybrid Nanofluid, Sol. Energ. Mat. Sol. C., 243: 111786 (2022).
[25] Sheikholeslami M., Analyzing Melting Process of Paraffin Through the Heat Storage with Honeycomb Configuration Utilizing Nanoparticles, J. Energy Storage., 52: 104954 (2022).
        https://doi.org/10.1016/j.est.2022.104954
[26] Sheikholeslami M., Ebrahimpour Z., Thermal Improvement of Linear Fresnel Solar System Utilizing Al2O3-Water Nanofluid and Multi-Way Twisted Tape, Int. J. Therm. Sci., 176: 104954 (2022).
        https://doi.org/10.1016/j.ijthermalsci.2022.107505
[27] Sheikholeslami M., Said Z., Jafaryar M., Hydrothermal Analysis for a Parabolic Solar Unit with Wavy Absorber Pipe and Nanofluid, Renew Energ., 188: 922-932 (2022).
        https://doi.org/10.1016/j.renene.2022.02.086
[28] Asadikia A., Mirjalily S. A. A., Nasirizadeh N., Kargarsharifabad, H., Characterization of Thermal And Electrical Properties of Hybrid Nanofluids Prepared with Multi-Walled Carbon Nanotubes and Fe2O3 Nanoparticles, Int. Commu. Heat Mass., 117: 104603 (2020).
[29] Asadikia A., Agha, M., Seyed A., Nasirizadeh Navid., Kargarsharifabad H., Hybrid Nanofluid Based on CuO Nanoparticles and Single-Walled Carbon Nanotubes: Optimization, Thermal, and Electrical Properties, Int. J. Nano Dim., 11 (3): 277-289 (2020).
[30] Dibaei M., Kargarsharifabad H., New Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer Under The Effect of a Magnetic Field: An Experimental Study, J. Heat Mass Trans. Res., 4(1): 1-11 (2017).
        10.22075/jhmtr.2016.486
[31] Alaei M., Torkian S., Shams M.H., Rashidi A.M., Simple Method for the Preparation of Fe3O4/MWCNT Nanohybrid as Radar Absorbing Material (RAM), Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 9-14 (2018).
[32] Qayyum S., Mehmood M., Mirza M.A., Ashraf S., Ahmed Z., Tanvir T., Choudhari M.A., Nisar F., Nisa Z ., Synthesis and Characterization of Silver and Gold Nano-Structures on Chitosan-Porous Anodic Alumina Nano-Composite, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 31-44 (2019).
[33] Zhang, H., Ma, L., Li, J., Zhang, J., Liu M., Zhao J.Y., Zhao L., Numerical Simulation of Reaction Mechanism of Ethane Pyrolysis to form Benzene and Styrene, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 9-18 (2020).
[34] Fathirad F., Ziaadini F., Mostafavi A., Shamspur T., Three-Layer Magnetic Nanocomposite Containing Semiconductor Nanoparticles as Catalyst for Dye Removal from Water Solutions under Visible Light, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1749-1756 (2021).
[35] Fekri M.H., Tousi F., Heydari R., Razavi Mehr M., Rashidipour M., Synthesis of Magnetic Novel Hybrid Nanocomposite (Fe3O4@SiO2/Activated Carbon) by a Green Method and Evaluation of Its Antibacterial Potential, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 767-776 (2022).
[36] Acharya N., Maity S., Kundu P.K., Influence of Inclined Magnetic Field on the Flow of Condensed Nanomaterial over a Slippery Surface: The Hybrid Visualization, Applied Nanoscience, 10(2): 633-647 (2020).
[37] Ahmad S., Ali K., Faridi A.A., Ashraf M., Novel Thermal Aspects of Hybrid Nanoparticles Cu-TiO2 in the Flow of Ethylene Glycol, International Communications in Heat and Mass Transfer, 129: 105708 (2021).
[38] Nilankush Acharya N., Suprakash Maity S., Kundu P.K., Influence of Inclined Magnetic Field on the Flow of Condensed Nanomaterial over a Slippery Surface: The Hybrid Visualization, Applied Nanoscience, 10: 633–647 (2020).
        https://doi.org/10.1007/s13204-019-01123-0