Intensified Phycobiliprotein Extraction from Spirulina Platensis by Freezing and Ultrasound Methods

Document Type : Research Article

Authors

1 Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, I.R. IRAN

2 Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, I.R. IRAN

Abstract

In this study, the extraction of phycobiliprotein pigments from Spirulina Platensis dried powder was optimized using ultrasound-assisted extraction (ultrasonic water bath) combined with the freezing-thawing method. Response surface methodology (RSM) using Central Composite Designs (CCD) was employed to investigate the combined effect of two process variables of ultrasound time (30-90 min) and freezing-thawing time (5-12 h) on the amount of allophycocyanin (A-PC), C-phycocyanin (C-PC), phycoerythrin (PE), C-PC purity (EP), and the yield of C-PC. The purification of C-PC extracted from optimal and control conditions (extracted via freeze-thawing method without ultrasound) was performed, and the C-PC powder was evaluated by FT-IR spectroscopy and XRD. Results showed that at the optimal conditions of sonication time (55.5 min) and freezing time (5h), the average values of PE, A-PC, C-PC concentration, C-PC purity, and C-PC yield were (0.095±0.009), (0.051mg/g), (0.109±0.051mg/g), (0.498±0.25), and (2.32±0.21 %), respectively. The comparison of scanning electron microscopy images of algae biomass indicated that freezing alone and for a long time had caused more destruction of cells. The damage caused by ice crystals and large pores led to the production of extract with low purity. The ultrasonic pretreatment (5.5 min) for extracting the C-PC pigment from Spirulina Platensis compared to the control sample (12 h freezing without ultrasound) did not destroy the functional groups in the pigments.

Keywords

Main Subjects


[1] Bachchhav M.B., Kulkarni M.V., Ingale A.G., An Efficient Extraction of Phycocyanin by Ultrasonication and Separation Using ‘Sugaring Out’, J. Phycol. Soc. India, 47: 19-24 (2017).
[2] Hoi W., Lee H., Effect of Ultrasonic Extraction on Production and Structural Changes of C-Phycocyanin from Marine Spirulina Maxima, International Journal of Molecular Sciences, 19(1):  220 (2018).
[3] Zhang, X.-F., X. Wang, and G.-H. Luo, Ultrasound-Assisted Three-Phase Partitioning of Phycocyanin From Spirulina Platensis,European Journal of Pure and Applied Chemistry, 4(1)      (2017).
[5] Aouir A., Amiali M., Kirilova-Gachovska T, Benchabane A., Arezki Bitam A., “The Effect of Pulsed Electric Field (PEF) and Ultrasound (US) Technologies on The Extraction of Phycopiliproteins from Arthrospira Platensis, in 2015 IEEE Canada International Humanitarian Technology Conference (IHTC2015). IEEE (2015).
[6] Bhosle D., Janghel A., DeoSaurav, Alexander A.,  Emerging Ultrasound-Assisted Extraction (UAE) Techniques as Innovative Green Technologies for the Effective Extraction of the Active Phytopharmaceuticals, Research Journal of Pharmacy and Technology, 8(7): 963-970 (2015).
[7] Chaiklahan R., Chirasuwan N., Loha V., Suvit Tia S., Boosya Bunnag B., Separation and Purification of Phycocyanin from Spirulina Sp. Using a Membrane Process. Bioresource Technology, 102(14): 7159-7164 (2011).
[9] Rodríguez-Sánchez R., Ortiz-Butrón R., Blas-Valdivia V., Hernández-García A., Cano-Europa E., Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) Maxima Protect Against HgCl2-Caused Oxidative Stress and Renal Damage, Food Chemistry, 135(4): 2359-2365(2012).
[10] Vonshak, A. Spirulina Platensis (Arthrospira). Taylor & Francis (1997).
[11] Jaouen, P., B. Lépine, N. Rossignol, R. Royer, and F. Quéméneur. Clarification and Concentration with Membrane Technology of a Phycocyanin Solution Extracted from Spirulina Platensis. Biotechnology Techniques, 13(12): 877-881(1999).
[12] Fernández-Rojas B., Hernández-Juárez J., Pedraza-Chaverri J., Nutraceutical Properties of Phycocyanin. Journal of Functional Foods11: 375-392 (2014).
[13] De Jesus Raposo M.F., de Morais R.M.S.C.,
de Morais A.M.M.B., Health Applications of Bioactive Compounds from Marine Microalgae, Life sciences93(15): p. 479-486(2013)
[14] Habib M.A.B., Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, Food and Agriculture Organization of the United Nations (2008).
[15]- Mishra, S.K., A. Shrivastav, and S. Mishra. Effect of Preservatives for Food-Grade C-PC from Spirulina Platensis, Process Biochemistry, 43(4): 339-345 (2008).
[16] Romay C., Gonzalez R., Ledon N., Remirez D., Rimbau V., C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory, and Neuroprotective Effects, Current Protein and Peptide Science, 4(3): 207-216 (2003)
[17] Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods, and Medicine, Applied Microbiology and Biotechnology, 80(1): 1-14 (2008).
[18] Suwal S., Perreault V., Marciniak A., Tamigneaux É., Deslandes É., Bazinet L., Jacques H., Beaulieu L., Doyen A., Effects of High Hydrostatic Pressure and Polysaccharidases on the Extraction of Antioxidant Compounds from Red Macroalgae, Palmaria Palmata, and Solieria Chordalis, Journal of Food Engineering252: 53-59(2019).
[19] Moraes C.C., Sala L., Cerveira G.P., Kalil S.J.,
C-Phycocyanin Extraction from Spirulina Platensis Wet Biomass, Brazilian Journal of Chemical Engineering28(1): 45-49(2011).
[20] İlter I., Akyıl S., Demirel Z., Koç M., Conk-Dalay M., Kaymak-Ertekin F., Optimization of Phycocyanin Extraction from Spirulina Platensis Using Different Techniques, Journal of Food Composition and Analysis, 70: 78-88(2018).
[21] Yucetepe A., Saroglu O., Bildik F., Ozcelik B., Daskaya-Dikmen C., Optimisation of Ultrasound-Assisted Extraction of Protein from Spirulina Platensis Using RSM, Czech Journal of Food Sciences36(1): 98-108 (2018).
[22] Sutanto H., Suzery M., Phyocyanin Extraction from Microalgae Spirulina Platensis Assisted by Ultrasound Irradiation: Effect of Time and Temperature. Songklanakarin Journal of Science & Technology, 38(4) (2016).
[24] Vernès L., Granvillain P., Chemat F., Vian M., Phycocyanin from Arthrospira Platensis. Production, extraction, and analysis. Current Biotechnology, 4(4): 481-491 (2015).
[25] Da Costa Ores J., de Amarante M.C.A., Kalil S.J., Co-Production of Carbonic Anhydrase and Phycobiliproteins by Spirulina Sp. and Synechococcus Nidulans, Bioresource Technology, 219: 219-227 (2016).
[26]- Ma Y.-Q., Chen J.-C., Liu D.-H., Ye X.-Q., Simultaneous Extraction of Phenolic Compounds of Citrus Peel Extracts: Effect of Ultrasound. Ultrasonics Sonochemistry, 16(1): 57-62 (2009).
[27] Al Jitan S., Alkhoori S.A., Yousef L.F., Phenolic Acids from Plants: Extraction and Application to Human Health, Studies in Natural Products Chemistry, 389-417. (2018).
[28] Hrishikesh A. Tavanandi, R.M., Jampani Chandrasekhar, K.S.M.S. Raghavarao. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira Platensis, Algal Research, 31: 239-251 (2018).
[29] Hadiyanto H., Suttrisnorhadi S., Response Surface Optimization of Ultrasound-Assisted Extraction (UAE) of Phycocyanin from Microalgae Spirulina Platensis, Emirates Journal of Food and Agriculture, 28(4): 227 (2016).
[30] Hadiyanto H., Adetya N.P., Response Surface Optimization of Lipid and Protein Extractions from Spirulina Platensis Using Ultrasound-Assisted Osmotic Shock Method, Food Science and Biotechnology27(5): 1361-1368 (2018).
[31] Chemists A.O.A.O.C., Official Methods of Analysis, (1920).
[33] Kamble S.P., Gaikar R.B., Padalia R.B., Shinde K.D., Extraction and Purification of C-phycocyanin from Dry Spirulina Powder and Evaluating its Antioxidant, Anticoagulation, and Prevention of DNA Damage Activity, Journal of Applied Pharmaceutical Science, 3(8): 149 (2013).
[34] Kumar D., Dhar D.W., Pabbi S., Kumar N., Walia S., Extraction and Purification of C-phycocyanin from Spirulina Platensis (CCC540), Indian Journal of Plant Physiology, 19(2): 184-188 (2014).
[35] Bennett A., Bogorad L., Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga, The Journal of Cell Biology, 58(2): 419-435(1973).
[36] Muthulakshmi M., Saranya A., Sudha M., Selvakumar G., Extraction, Partial Purification, and Antibacterial Activity of Phycocyanin from Spirulina Isolated from Freshwater Body Against Various Human Pathogens, J. Algal. Biomass Util., 3(3): 7-11 (2012).
[38] Aarabi A., Mizani M., Honarvar M., The Use of Sugar Beet Pulp Lignin for the Production of Vanillin, International Journal of Biological Macromolecules, 94, Part A: 345-354(2017).
[39] Marrez D., Naguib M.M., Sultan Y., Daw Z.Y., Higazy A.M., Evaluation of Chemical Composition for Spirulina Platensis in Different Culture Media, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5: 1161-1171(2014)
[40] Furuki T., Maeda S., Imajo S., Hiroi T., Amaya T., Hirokawa T., Ito K., Nozawa H., Rapid and Selective Extraction of Phycocyanin from Spirulina Platensis with Ultrasonic Cell Disruption, Journal of Applied Phycology, 15(4): 319-324 (2003).
[41] Ferraro G., Imbimbo P., Marseglia A., Lucignano R., Monti D.M., Merlino A., X-Ray Structure of
C-Phycocyanin From Galdieria Phlegrea: Determinants of Thermostability and Comparison with a C-Phycocyanin in the Entire Phycobilisome.
Biochimica et Biophysica Acta. Bioenergetics, 1861(9): 148236 (2020).
[42] Safaei M., Maleki H., Soleimanpour H., Norouzy A., Zahiri H.S., Vali H., Noghabi K.A., Development of a Novel Method for the Purification of C-Phycocyanin Pigment from a Local Cyanobacterial Strain Limnothrix sp. NS01 and Evaluation of its Anticancer Properties, Scientific Reports, 9(1) (2019).
[43] Luo J., Fang Z., Smith R.L., Ultrasound-Enhanced Conversion of Biomass to Biofuels, Progress in Energy and Combustion Science, 41: 56-93 (2014).
[45] Safi C., Ursu A.V., Laroche C., Zebib B., Merah O., Pontalier P.-Y., Vaca-Garcia C., Aqueous Extraction of Proteins from Microalgae: Effect of Different Cell Disruption Methods, Algal Research, 3: 61-65(2014).
[46] Patel A., Mishra S., Pawar R., Ghosh P.K., Purification and Characterization of C-Phycocyanin from Cyanobacterial Species of Marine and Freshwater Habitat, Protein Expression and Purification, 40(2): 248-255 (2005).
[47] Vali Aftari R., Rezaei K., Mortazavi A., Bandani A.R., The Optimized Concentration and Purity of Spirulina Platensis C‐Phycocyanin: A Comparative Study on Microwave‐Assisted and Ultrasound‐Assisted Extraction Methods, Journal of Food Processing and Preservation39(6): 3080-3091(2015).
[48] Chia S.R., Chew K.W., Leong H.Y., Manickam S., Show P.L., Nguyen T.H.P., Sonoprocessing-Assisted Solvent Extraction for the Recovery of Pigment-Protein Complex from Spirulina Platensis, Chemical Engineering Journal, 398: 125613(2020).
[49] Tavanandi H.A., Vanjari P., Raghavarao K.S.M.S., Synergistic Method for Extraction of High Purity Allophycocyanin from Dry Biomass of Arthrospira Platensis and Utilization of Spent Biomass for Recovery of Carotenoids, Separation and Purification Technology, 225: p. 97-111(2019).
[50] Donsì F., Ferrari G., Pataro G., Emerging Technologies for the Clean Recovery of Antioxidants from Microalgae, Microalgae, 173-205 (2021).
[51] Hadiyanto H., Suttrisnorhadi S., Response Surface Optimization of Ultrasound-Assisted Extraction (UAE) of Phycocyanin from Microalgae Spirulina Platensis, Emirates Journal of Food and Agriculture, 227-234 (2016)
[52] Pearce R.S., Plant Freezing and Damage. Annals of Botany, 87(4): 417-424(2001).
[53] Lupatini A.L., de Oliveira Bispo L., Colla L.M., Costa J.A.V., Canan C., Colla E., Protein and Carbohydrate Extraction from S. Platensis Biomass by Ultrasound and Mechanical Agitation, Food Research International, 99: 1028-1035 (2017).
[54] Cha K.H., Lee H.J., Koo S.Y., Song D.-G., Lee D.-U., Pan C.-H., Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58(2): 793-797 (2010).
[55] Ruen-Ngam A., Shotipruk D., Pavasant P., Comparison of Extraction Methods for Recovery of Astaxanthin from Haematococcus Pluvialis. Separation Science and Technology, 46(1): 64-70 (2011).