Modeling of Groundnut Shell Mercerization Process Using a Neuro-Fuzzy Technique

Document Type : Research Article

Author

Chemical Engineering Department, Michael Okpara University of Agriculture, Umudike, Abia State, NİGERİA

Abstract

Natural fiber is growing relevant in composite processing due to its low cost, lightweight, and good mechanical properties; therefore, increased natural fiber composite development is desirable. This study predicted the mercerization effect on the moisture absorption properties of groundnut shell samples using neuro-fuzzy modeling. The groundnut shells were processed, dried, and treated with NaOH varying the time and concentration of the treatment. Sensitivity analysis using the adaptive neuro-fuzzy inference system) ANFIS's exhaustive search showed that treatment time and concentration impacted the moisture absorption rate of groundnut shells. Parametric analysis via ANFIS surface plot indicated that an increase in treatment time and concentration decreased the moisture absorption rate of the samples. The characterization results from SEM(Scanning electron micrograph) and FT-IR (Fourier Transform Infrared Spectroscopy) showed that the groundnut shells were suitably mercerized. ANFIS optimum result showed that the moisture absorption rate of 1.23% was obtained at a treatment time of 4 hours and a concentration of 4 mol; pi membership function (mf) had the best coefficient of determination R2 (0.99364) and Mean Square Error (MSE, 0.011679) amongst other membership functions demonstrating a significant predictive behavior for the model. The observations from the study prove that the ANFIS technique is a practical approach for the prediction of the groundnut shell mercerization process.

Keywords

Main Subjects


[1] Alaneme K.K., Bodunrin M.O., Awe A.A., Microstructure, Mechanical and Fracture Properties of Groundnut Shell Ash and Silicon Carbide Dispersion Strengthened Aluminium Matrix Composites, Journal of King Saud University-Engineering Sciences, 30(1): 96-103 (2018).
[2] Nwosu-obieogu K., Ejim I.F., Adekunle K.F., Mechanical Properties of Rice Husk Reinforced Low-Density Polyethylene Composite, International Journal of Research in  Advanced Engineering and Technology, 2(1): 10-15 (2016).
[3] Obasi H.C., Nwanonenyi S.C., Chiemenem L., Nwosu-Obieogu K., Effects of Fibre Acetylation and Fibre Content on the Properties of Piassava Fibre Reinforced Polystyrene, Futo. J. Ser., 4: 475-491 (2018).
[4] Faria L.U.S., Pacheco B.J.S., Oliveira G.C., Silva J.L., Production of Cellulose Nanocrystals from Pineapple Crown Fibres through Alkaline Pretreatment and Acid Hydrolysis under Different Conditions, Journal of Materials Research and Technology9(6): 12346-12353 (2020).
[5] Nwosu-Obieogu K., Aguele F.O., Chiemenam L.I., Akatobi K.N., Osoh K., Onyekwulu C.S., Creep and Stress Relaxation Behaviour of Rice Husk Reinforced Low-Density Polyethylene Composites, European Journal of Sustainable Development Research4(4): em0144 (2020).
[6] Zhu L., Zhao H., Lan B., Hou L., Bi S., Xu Y., Lu Y., Bio-inspired Fabrication of Cu-Ni Coatings onto Mercerized Flax Fabric by Electroless PlatingFibres and Polymers21(2): 324-333 (2020).
[7] Camani P.H., Anholon B.F., Toder R.R., Rosa, D.S.,  Microwave-Assisted Pretreatment of Eucalyptus Waste to Obtain Cellulose Fibres, Cellulose27(7): 3591-3609 (2020).
[8] Ayo M.D., Ekebafe L.O., Chukwu M.N., Madufor I.C., Effect of Carbonization Temperatures of the Filler Properties of Groundnut Shell Powder, International Journal of Chemistry, 21: 55-58 (2011).
[9] Lazarenko G., Kasprzhitskii A., Yavna V., Mischinenko V., Kukharskii A., Kruglikov A., Yalovega G., Effect of Pre-Treatment of Flax Tows on Mechanical Properties and Microstructure of Natural Fibre Reinforced Geopolymer Composites, Environmental Technology & Innovation, 20: 101105  (2020).
[11] Kenechi N.O., Linus C., Kayode A., Utilization of Rice Husk as Reinforcement in Plastic Composites Fabrication-A ReviewAmerican Journal of Materials Synthesis and Processing, 1(3): 32-36 (2016).
[12] da Silva Nicolau G., Weber R.P., Monteiro S.N., Loureiro G.A., Lavinsky A.A., da Fonseca L.V., Machado V.C., Influence of Mercerization Process on the Surface of Coconut Fiber for Composite Reinforcement, Materials Science Forum, 1012: 37-42 (2020).
[15] Ferro M., Mannu A., Panzeri W., Theeuwen C.H.,  Mele A., An İntegrated Approach to Optimizing Cellulose Mercerization, Polymers, 12(7): 1559 (2020).
[16] Hassan M.Z., Roslan S.A., Sapuan S.M., Rasid Z.A., Mohd Nor A.F., Md Daud M.Y., Mohamed Yusoff M.Z., Mercerization Optimization of Bamboo (Bambusa Vulgaris) Fibre-Reinforced Epoxy Composite Structures using a Box–Behnken Design, Polymers12(6): 1367 (2020).
[17] Nwosu-Obieogu K., Aguele F.O., Chiemenem L.I., Optimization on Rubber Seed Oil Epoxidation Process Parameters using Response Surface Methodology, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(5): 1575-1583 (2020).
[18] Nwosu-Obieogu K., Hamed J.O., Anike E.N., Aguele F.O., Ukandu O., Obasi H.C., Uduma C.K.,  Chiemenem L.I., Studies on the EPoxidation of Groundnut Seed Oil with Carboxylic Acid FUTOJNLS. 5: 94-101 (2019).
[19] Kamar F.H., Nechifor A.C., Alwan G.M., Craciun M.E., Nechifor G., Comparative Removal of Lead, Copper and Cadmium İons from Wastewater in Single and Ternary Batch Biosorption Systems onto Dry Walnut ShellsRev. Chim. (Bucharest)66(8): 1083 (2015).
[20] Shakor Z.M., Mahdi H.H., Al-Sheikh F., Alwan G.M., Al-Jadir T., Ni, Cu, and Zn Metal İons Removal from Synthetic Wastewater Using a Watermelon Rind (Catullus Landaus)Materials Today: Proceedings
42: 2502-2509 (2021).
[21] Alwan G.M., Improving Operability of Lab-Scale Spouted Bed using Global Stochastic Optimization, Journal of Engineering Research and Applications5: 136-146 (2015).
[22] Oke E.O., Nwosu-Obieogu K., Ude C.J., Experimental study and exergy efficiency prediction of three-leaved yam (Dioscorea duodenum) starch drying, Int. J. Exergy, 33(4): 427-443 (2020).
[23] Nwosu-Obieogu K., Aguele F., Chiemenem L.I., Soft Computing Prediction of Oil Extraction from Huracrepitan Seeds, Kem. Ind., 69(12): 653-658 (2020).
[24] Mashhadban H., Kutanaei S.S.,  Sayarinejad M.A. Prediction and Modelling of Mechanical Properties in Fibre Reinforced Self-Compacting Concrete using Particle Swarm Optimization Algorithm and Artificial Neural Network, Construction and Building Materials, 119: 277-287 (2016).
[25] Nwosu-Obieogu K., Ejim I.F., Adekunle K.F., Mechanical Properties of Rice Husk Reinforced Low-Density Polyethylene Composite, International Journal of Research in Advanced Engineering and Technology, 2(1): 10-15 (2016).
[26] Ojediran O.J.,  Okonkwo C.E.,  Adeyi A.J.,  Adeyi O.,  Olaniran F.O.,  George N.E., Olayanju A.T., Drying Characteristics of Yam Slices (Dioscorea Rotundata) in a Convective Hot Air Dryer: Application of ANFIS in the Prediction of Drying Kinetics, Heliyon, 6: e03555 (2020). 
 [27] Yue X.,  Chen Y.,  Chang G., Accurate Modelling of Biodiesel Production from Castor Oil using ANFIS, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1: 1-7 (2018).  
[28] Roy K.,  Mukherjee A.,  Jana K.D., Prediction of Maximum Oil Yield from Almond Seed in the Chemical İndustry: A Novel Type-2 Fuzzy Logic Approach, South African Journal of Chemical Engineering, 29: 1-9 (2019).
[29] Nwosu-Obieogu K., Dzarma G.W., Ugwuodo B.B., Chiemenem L.I., Akatobi K.N., luffa Seed Oil Extraction: Response Surface and Neuro-Fuzzy Modelling Performance Evaluation and Optimization, Process İntegration and Optimization for Sustainability, 1: 1-14 (2021).
[30] Nwosu-Obieogu K., Dzarma G.W., Ehimogue P., Ugwuodo C.B., Chiemenem L.I., Textile wastewater heavy metal removal using luffa cylindrica activated carbon: an ANN and ANFIS predictive model evaluation, Applied Water Science, 12(3): 1-11 (2022).
[31] Nwosu-Obieogu K., Dzarma G., Chiemenem L., ANFIS Prediction of Antioxidants Yield for Luffa OilActa Technica Corviniensis-Bulletin of Engineering14(4): 65-68 (2021).
[32] Nwosu-Obieogu K., Dzarma G.W., Ugwuodo C.W., Chiemenem L.I., Environmental Sustenance via Melon Seed Peel Conversion to Fermentable Sugars using Soft Computing Models, Cleaner Engineering and Technology, 7: 100452 (2022).
[33] Nwosu-Obieogu K.,  Muofunnaya U., Rubber Seed Oil Epoxidation; Experimental Study and Soft Computational Prediction, Annals of the faculty of Engineering Hunedoara-International Journal of Engineering, 4: 65-70 (2021).
[34] Yin G., Alazzawi F.J.I., Bokov D., Marhoon H.A., El-Shafay A.S., Rahman M.L., Nguyen H.C., Multiple Machine Learning Models for Prediction of CO2 Solubility in Potassium and Sodium based Amino Acid Salt SolutionsArabian Journal of Chemistry15(3): 103608 (2022).
[35] Xu P., Alqsair U.F., El-Shafey A.S., Prediction of Gas Fraction in Wastewater Treatment with ANFIS Method for Different Height of Single Sparger LocationEnvironmental Technology & Innovation, 26: 102350 (2022).
[37] Adeyi A.J., Adeyi O., Ogunsola A.D., Fajobi M.O., Ajayi O.K., Oyelami S., Otolorin J.A., Moisture Absorption Characteristics and Adaptive Neuro-Fuzzy Modelling of Ampelocissus Cavicaulis Fiber Reinforced Epoxy CompositeLAUTECH Journal of Engineering and Technology14(2): 89-97 (2020).
[38] Reichart A.A., DaSa R.M., DaSilva H.E.G., Beatrice G.A.C., Fajardo A.R., de Oliveira D.A., Utilization of Pineapple Crown Fibre Recycled Polypropylene for Production of Sustainable Composite, Journal of Renewable Materials, 8(10): 1327-1341 (2020).
[39] Chong S.S., Aziz A.A., Harun S.W., Arof H., Shamshirband S., Application of Multiple Linear Regression, Central Composite Design, and ANFIS Models in Dye Concentration Measurement and Prediction using Plastic Optical Fibre Sensor, Measurement74: 78-86 (2015).
[40] Haji A.,  Payvandy P., Application of ANN and ANFIS in the Prediction of Colour Strength of Plasma-Treated Wool Yarns Dyed with a Natural Colourant, Pigment & Resin Technology, 49(3): 171-180 (2020).