Two New Cholinesterase Inhibitory and Antioxidative Constituents from Syzygium cumini

Document Type : Research Article

Authors

1 Institute of Chemical sciences, Gomal University, D I Khan, KPK, PAKISTAN

2 Department of Chemistry, FBS, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, PAKISTAN

3 Institute of Chemical Sciences, Gomal University, D I Khan, KPK, PAKISTAN

Abstract

Phytochemical investigation on dichloromethane (CH2Cl2) fraction from fruit seeds of Syzygium cumini provided two new esters Syzygioate A (1) and Syzygioate B (2), along with known compounds dipropyl succinate and dioctyl phthalate. The isolated compounds were characterized via spectroscopic techniques such as 1H, 13C NMR, EI-MS spectrometry, and FT-IR. The bioassay studies were also conducted for the isolated compounds where the new compound 1 and 2 exhibited significant inhibition potential against acetylcholinesterase (AChE), butylcholinesterase (BChE) & antioxidant activity against Diammonium 2,2'- azino -bis (3-ethyl benzo thiazoline-6-sulfonic acid (ABTS), superoxide anion radical scavenger & 2,2-di phenyl-1-picryl hydrazyl (DPPH). The IC50 values of compounds 1 and 2 for their cholinesterase inhibition were 7.15, 4.54µM against AChE, and 9.21 & 6.31µM against BChE. The DPPH radical scavenging potential for compounds 1 & 2 exhibited IC50 values as 69.4µg/ml and 74.6µg/ml respectively.

Keywords

Main Subjects


[1] Mitra S.K., Irenaeus T.K.S., Gurung M.R., Pathak P.K., Taxonomy and importance of Myrtaceae, Acta Hortic, 959: 23-34 (2012).
[2] Helmstädter A., Syzygium Cumini (L.) SKEELS (Myrtaceae) Against Diabetes–125 Years of Research, Pharmazie, 63(2): 91-101 (2008).
[3] Ayyanar M., Subash-Babu P., Syzygium Cumini (L.) Skeels: A Review of its Phytochemical Constituents and Traditional Uses, Asian Pac. J. Trop. Biomed., 2(3): 240-246 (2012).
[5] Annaduari G., Subramanian R., Gabrial K.S., Ponnanikajamideen M., Rajeshkumar S., Sivasubramanian G., Synthesis of Green Zinc Oxide Nanoparticles Mediated by Syzygium Cumini Induced Developmental Deformation in Embryo Toxicity of (Daniorerio) Zebrafish, Iran. J. Chem. Chem. Eng. (IJCCE), 41(12): 3895-3904 (2022).
[6] Sisodia S.S., Bhatnagar M., Hepatoprotective Activity of Eugenia Jambolana Lam. in Carbon Tetrachloride Treated Rats, Indian J. Pharmacol., 41(1): 23-27 (2009).
[7] Li L., Adams L.S., Chen S., Killian C., Ahmed A., Seeram N.P., Eugenia Jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but not Non-Tumorigenic Breast Cells, J. Agric. Food Chem., 57(3): 826-831 (2009).
[8] Tougu V., Acetylcholinesterase: Mechanism of Catalysis and Inhibition, Curr. Med. Chem.: Cent. Nerv. Syst. Agents, 1(2): 155-170 (2001).
[9] Perry E.K., The Cholinergic Hypothesis—Ten Years on, Br. Med. Bull., 42(1): 63-69 (1986).
[10] Ullah H., Hussain A., Asif M., Nawaz F., Rasool M., Natural Products as Bioactive Agents in the Prevention of Dementia, CNS Neurol. Disord.: Drug Targets, 22(4): 466-476 (2022).
[11] Eshwarappa R.S.B., Iyer R.S., Subbaramaiah S.R., Richard S.A., Dhananjaya B.L., Antioxidant Activity of Syzygium Cumini Leaf Gall Extracts, BioImpacts, 4(2): 101-107 (2014).
[12] Darusman L.K., Wahyuni W.T., Alwi F., Acetylcholinesterase Inhibition and Antioxidant Activity of Syzygium Cumini, S. Aromaticum and S. Polyanthum from Indonesia, J. Biol. Sci., 13(5): 412-416 (2013).
[13] Aftab Z., Bushra, Khan H., Khan D.F., Khan A., Ullah H., Shahnaz., Shafiullah., Three New Cholinesterase Inhibitory Cassioates from Cassia Fistula, Pharm. Chem. J., 53(11): 1069–1075 (2020).
[14] Rocha J B., Emanuelli T., Pereira M E., Effects of Early Undernutrition on Kinetic Parameters of Brain Acetylcholinesterase from Adult Rats, Acta Neurobiol. Exp., 53(3): 431-437 (1993).
[15] Kulisic T., Radonic A., Katalinic V., Milos M., Use of Different Methods for Testing Antioxidative Activity of Oregano Essential Oil, Food Chem., 85(4): 633-640 (2004).
[16] Obied H.K., Allen M.S., Bedgood D.R., Prenzler P.D., Robards K., Stockmann R., Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste, J. Agric. Food Chem., 53(4): 823-837 (2005).
[17] Huang B., Ban X., He J., Tong J., Tian J., Wang Y., Hepatoprotective and Antioxidant Activity of Ethanolic Extracts of Edible Lotus (Nelumbo Nucifera Gaertn.) Leaves, Food Chem., 120(3): 873-878 (2010).
[18] Sabu M.C., Kuttan R., Anti-Diabetic Activity of Medicinal Plants and its Relationship with their Antioxidant Property, J. Ethnopharmacol., 81(2): 155-160 (2002).
[19] Baartzes N., Stringer T., Smith G.S., Targeting Sensitive-Strain and Resistant-Strain Malaria Parasites through a Metal-Based Approach, Adv. Bioorganomet. Chem., 193-213 (2019).
[20] Chigorimbo-Murefu N.T., Riva S., Burton, S.G., Lipase-Catalysed Synthesis of Esters of Ferulic Acid with Natural Compounds and Evaluation of their Antioxidant Properties, J. Mol. Catal. B: Enzym., 56(4): 277-282 (2009).
[21] Cecarini V., Gee J., Fioretti E., Amici M., Angeletti M., Eleuteri A.M., Keller J.N., Protein Oxidation and Cellular Homeostasis: Emphasis on Metabolism, Biochim. Biophys. Acta, Mol. Cell Res., 1773(2): 93-104 (2007).
[22] Halliwell B., Gutteridge J M., “Free radicals in biology and medicine”, Oxford University Press, USA (2015).