Zn-Porphyrin Nanoring as a CO Gas Sensor: A Fast Response and Short Recovery Time Sensor

Document Type : Research Article

Authors

Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

Abstract

The butadiyne-linked four-metalloporphyrin nanoring (Zn4P4) is a promising candidate in future nanoelectronic applications such as nanosensors for small gas molecules. The aim of this work is to analyze the CO gas sensing capacity of Zn4P4 using Density Functional Theory (DFT) calculations at CAM-B3LYP/6-31G (d,p) level of theory. To predict the gas adsorption properties of the Zn4P4 system the geometrical structures, binding energies, band gaps, the Density of States (DOS), adsorption energies (), HOMO and LUMO energies, Fermi level energies (EFL), natural bond orbital (NBO), and frontier molecular orbital (FMO) were calculated. Here it should be remarked that the adsorption of CO gas molecule on Zn4P4 nanoring from the outer side is higher than the inner side. Moreover, the adsorption from the Carbon site of the CO gas molecule is stronger than from the Oxygen site. Also, the closest distance of CO with the Zn4P4 molecule is in the range of 2.505-2.706A˚. Moreover, the range of values was from -6.50 to -9.40 kCal/mol. The results revealed that during the adsorption of CO gas molecule on Zn4P4 the amounts of Eg and consequently, σ have been considerably changed. Based on the calculated and a notable decrease in the Eg, it is expected that the Zn4P4 is sensitive to CO molecules. Amazingly, the Zn4P4-CO records favorable values of recovery times for different attempt frequencies. Therefore, the results open a way for the development of a new and selective CO nanosensor.

Keywords

Main Subjects


[1] Mohajeri S., Kamani M., Salari A.A., Noei M., Ebrahimikia M., Ahmadaghaei N., Molaei N., Adsorption of Aniline Toxic Gas on a BeO Nanotube, Iran. J. Chem. Chem. Eng. (IJCCE),  38(1): 43-48 (2019).
[2] Aratani N., Kim D., Osuka A., Discrete Cyclic Porphyrin Arrays as Artificial Light-Harvesting Antenna, Accounts of Chemical Research, 42(12): 1922-1934 (2009).
[3] Collman J. P., Fu L., Synthetic Models for Hemoglobin and Myoglobin, Accounts of Chemical Research, 32(6): 455-463 (1999).
[4] Taylor P., Aplin R., Anderson H., Conjugated Porphyrin Oligomers from Monomer to Hexamer, Chemical Communications, (8): 909-910 (1998).
[5] Screen T.E., Thorne J.R., Denning R.G., Bucknall D.G.,  Anderson H. L., Amplified Optical Nonlinearity in a Self-Assembled Double-Strand Conjugated Porphyrin Polymer Ladder, Journal of the American Chemical Society, 124(33): 9712-9713(2002).
[6] Posligua V., Aziz A., Haver R., Peeks M.D., Anderson H.L., Grau-Crespo R., Band Structures of Periodic Porphyrin Nanostructures, The Journal of Physical Chemistry C, 122(41): 23790-23798 (2018).
[7] Rousseaux S.A., Gong J.Q., Haver R., Odell B., Claridge T.D., Herz L.M., Anderson H.L., Self-Assembly of Russian Doll Concentric Porphyrin Nanorings, J. Am. Chem. Soc. 137:12713-12718 (2015).
[8] Nakamura Y., Aratani N., Shinokubo H., Takagi A., Kawai T., Matsumoto T., Yoon Z.S., Kim D.Y.,
Ahn T.K., Kim D., Muranaka A., Kobayashi N., Osuka A., A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties that Arise from the Planar Cyclooctatetraene Core, J. Am. Chem. Soc., 128(12): 4119-4127 (2006).
[9] Cremers J., Haver R., Rickhaus M., Gong J.Q., Favereau L., Peeks M.D., Claridge T.D.W., Herz L.M., Anderson H.L., Template-Directed Synthesis of a Conjugated Zinc Porphyrin Nanoball,  J. Am. Chem. Soc., 140(16):5352-5355 (2018).
[10] Bressan G., Jirasek M., Anderson H.L., Heisler I.A., Meech S.R., Exciton–Exciton Annihilation as a Probe of Exciton Diffusion in Large Porphyrin Nanorings, The Journal of Physical Chemistry C, 124(34): 18416-18425 (2020).
[11] O’Sullivan M.C., Sprafke J.K., Kondratuk D.V., Rinfray C., Claridge T.D., Saywell A., Anderson H.L., Vernier Templating and Synthesis of a 12-Porphyrin Nano-Ring, Nature, 469(7328): 72-75 (2011).
[12] Richert S., Cremers J., Anderson H.L., Timmel C.R., Exploring Template-Bound Dinuclear Copper Porphyrin Nanorings by EPR Spectroscopy, Chemical Science, 7(12): 6952-6960  (2016).
[13] Fukui K., The Role of Frontier Orbitals in Chemical Reactions (Nobel Lecture), Angewandte Chemie International Edition in English, 21(11): 801-809 (1982).
[14] Reed A.E., Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chemical Reviews, 88(6): 899-926 (1988).
[16] Asgari Y., Ghaemi M., Mahjani M., Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 143-150 (2011).
        https://doi.org/10.30492/ijcce.2011.6366
[15] Pirsa S., Zandi M., Almasi H., Hasanlu S., Selective Hydrogen Peroxide Gas Sensor Based on Nanosized Polypyrrole Modified by CuO Nanoparticles, Sensor Letters, 13(7): 578-583 (2015).
[17] Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M. S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery Jr, J. A. General Atomic and Molecular Electronic Structure System, Journal of Computational Chemistry, 14(11): 1347-1363 (1993).
[18] Saeidipoor A., Arshadi S., Benam M. R., The Titano-Porphyrin Doped Pillared Graphene as a Novel “Turn-Off” Fluorescent Sensor for CO Gas: Theoretical Study, Physica E: Low-Dimensional Systems and Nanostructures, 127: 114554 (2021).
[19] Arshadi S., Pourkhiz F., NBO, AIM, and TD-DFT Assisted Screening of BNNT Optimum Diameter
on Ethyl Phosphorodimethylamidocyanidate Sensor Design
, Phosphorus, Sulfur, and Silicon and the Related Elements, 191(7): 1013-1021 (2016).
        https://doi.org/10.1080/10426507.2015.1130045
[20] Pohle R., Tawil A., Davydovskaya P., Fleischer M., Metal Organic Frameworks as Promising High Surface Area Material for Work Function Gas Sensors, Procedia Engineering, 25: 108-111 (2011).
[22] Parr R.G., Szentpály L.V., Liu S., Electrophilicity Index, Journal of the American Chemical Society, 121(9): 1922-1924 (1999).
[23] Arshadi S., Anisheh F., Theoretical Study of Cr and Co-Porphyrin-Induced C70 Fullerene: A Request
for a Novel Sensor of Sulfur and Nitrogen Dioxide
, Journal of Sulfur Chemistry, 38(4): 357-371 (2017).
[24] Brémond É.A., Kieffer J., Adamo C., A Reliable Method for Fitting TD-DFT Transitions to Experimental UV–Visible Spectra, Journal of Molecular Structure: THEOCHEM, 954(1-3): 52-56 (2010).
[25] Al E.B., Kasapoglu E., Sakiroglu S., Sari H., Sökmen I., Duque C.A., Binding Energies and Optical Absorption of Donor Impurities in Spherical Quantum Dot under Applied Magnetic Field. Physica E: Low-Dimensional Systems and Nanostructures, 119: 114011 (2020).
[26] Lu G., Yuan Y., Deng K., Wu H., Yang J., Wang X., Density-Functional Energetics and Frontier Orbitals Analysis for the Derivatives of the Nonclassical Four-Membered Ring Fullerene C62, Chemical Physics Letters, 424(1-3): 142-145 (2006).
[28] Shalabi A.S., Aal S.A., Kamel M.A., Taha H.O., Ammar H.Y., Halim W.A., The Role of Oxidation States in FA1 Tln+ (N= 1, 3) Lasers and CO Interactions at the (1 0 0) Surface of NaCl: An Ab Initio Study, Chemical Physics, 328(1-3): 8-16 (2006).
[29] Olatunde A.O., Olafadehan O.A., Usman M.A., Modeling and Simulation of Partial Oxidation of Methanol to Formaldehyde on FeO/MoO3 Catalyst in a Catalytic Fixed Bed Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1800-1813 (2021).
[30] Zhao Z., Yong Y., Zhou Q., Kuang Y., Li X., Gas-sensing Properties of the SiC Monolayer and Bilayer: A Density Functional Theory Study, ACS Omega, 5(21): 12364-12373 (2020).
[31] Hosseinian A., Salary M., Arshadi S., Vessally E., Edjlali L., The Interaction of Phosgene Gas with Different BN Nanocones: DFT Studies, Solid State Communications, 269: 23-27 (2018).
[32] Yong C.K., Parkinson P., Kondratuk D.V., Chen W.H., Stannard A., Summerfield A., Herz L.M., Ultrafast Delocalization of Excitation in Synthetic Light-Harvesting Nanorings, Chemical Science, 6(1): 181-189 (2015).
 [33] Glendening E.D., Landis C.R., Weinhold F., Natural Bond Orbital Methods, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1):
1-42 (2012).  
[34] Weinhold F., Landis C.R., Glendening E.D., What Is NBO Analysis and How Is It Useful?, Int. Rev. Phys. Chem., 35(3): 399-440 (2016).
[35] Norouzi N.,  Talebi S., Shahbazi A., An Overview on the Carbon Capture Technologies with an Approach of Green Coal Production Study, Chem. Rev. Lett. 3: 65-78 (2020).
         https://doi.org/10.22034/crl.2020.224177.1043
[36]Vessally E., Mohammadi S., Abdoli M., Hosseinian A., Ojaghloo P., Convenient and Robust Metal-Free Synthesis of Benzazole-2-ones through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium, Iran. J. Chem. Chem. Eng. (IJCCE) 39(5): 11-19 (2020).‏
[37] Gharibzadeh F., Vessally E., Edjlali L., Es'haghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion, Iran. J. Chem. Chem. Eng (IJCCE). 39(6): 51-62 (2020).
 [39] Norouzi N., Future of Hydrogen in Energy Transition and Reform, J. Chem. Lett., 2: 64-72 (2021).
[40] Vessally E., Hosseinian A., A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries, Iran. J. Chem. Chem. Eng (IJCCE). 40(3): 691-703 (2021). 
[41] Hashemzadeh,B., Edjlali L., Delir Kheirollahi Nezhad P., Vessally, E., A DFT Studies on a Potential Anode Compound for Li-Ion Batteries: Hexa-cata-hexabenzocoronene Nanographen, Chem. Rev. Lett., 4: 232-238 (2021).
        https://doi.org/10.22034/crl.2020.187273.1087
[42] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and Its Al–and Si–Doped Derivatives for Methimazole Drug,  Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 1001-1011 (2021).
[43] Majedi S., Sreerama L., Vessally E., Behmagham F., Metal-Free Regioselective Thiocyanation of (Hetero) Aromatic C-H Bonds using Ammonium Thiocyanate: An Overview, J. Chem. Lett., 1: 25-31 (2020).
       https://doi.org/10.22034/jchemlett.2020.107760
[45] Salehi N., Vessally E., Edjlali L., Alkorta I., Eshaghi M., Nan@Tetracyanoethylene (n=1-4) Systems: Sodium Salt vs Sodium , Chem. Rev. Lett., 3: 207-217 (2020). https://doi.org/10.22034/crl.2020.230543.1056
[46] Soleimani-Amiri S., Asadbeigi N.,  Badragheh S., A Theoretical Approach to New Triplet and Quintet (nitrenoethynyl) alkylmethylenes,(nitrenoethynyl) alkylsilylenes,(nitrenoethynyl)  Iran. J. Chem. Chem. Eng. (IJCCE). 39(4): 39-52 (2020).
[47] Sreerama L., Vessally E., Behmagham F., Oxidative Lactamization of Amino Alcohols:  J. Chem. Lett., 1: 9-18 (2020).
[48] Norouzi N., Ebadi A.G., Bozorgian A., Vessally E., Hoseyni S.J.,  Energy and Exergy Analysis of Internal Combustion Engine Performance of Spark Ignition for Gasoline, Methane, and Hydrogen Fuels, Iran. J. Chem. Chem. Eng. (IJCCE)., 40(6): 1909-1930 (2021).
        https://doi.org/10.22034/crl.2020.259697.1093
[50] Vessally E., Musavi M., Poor Heravi M.R., A Density Functional Theory Study of Adsorption Ethionamide on the Surface of the Pristine, Si and Ga and Al-Dopped Graphene, Iran. J. Chem. Chem. Eng. (IJCCE), 40(6): 1720-1736 (2021).
[51] Vakili M., Bahramzadeh V., Vakili M., A Comparative Study of SCN-Adsorption on the Al12N12, Al12P12, and Si and Ge -Doped Al12N12 Nano-Cages to Remove …, J. Chem. Lett., 1: 172-178 (2020).
[52] Bozorgian A., Norouzi N., Ebadi A.D., Hoseyni S.J., Vessally E., Cogeneration System of Power, Cooling, and Hydrogen from Geothermal Energy: An Exergy Approach, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 706-721 (2022).
[54] Norouzi N., Joda F., Exergy and Stabilization Design of a Fusion Power Plant and Its Waste Heat Recovery to Hydrogen, Iran. J. Chem. Chem. Eng. (IJCCE), 41 (2022). [in Press]  
[55] Norouzi N., Talebi S., An Overview on the Green Petroleum Production, Chem. Rev. Lett. 3: 38-52 (2020)
[56] Vessally E., Siadati S.A., Hosseinian A., Edjlali L. Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphen Segment, Talanta, 162: 505-510 (2017).
 [57] Rabipour S., Mahmood E.A., Afsharkhas M. A Review on the Cannabinoids Impacts, Chem. Rev. Lett. 5 (2022).
        https://doi.org/10.30492/ijcce.2021.528164.4669
[61] Rabipour S., Mahmood E.A., Afsharkhas M., Medicinal Use of Marijuana and Its Impacts on Respiratory System, J. Chem. Lett. 3: 86-94 (2022).
        https://doi.org/10.30492/ijcce.2021.530629.4739
[63] Cao Y., Soleimani-Amiri S., Ahmadi R., Issakhov A., Ebadi, A.G., Vessally, E., Alkoxysulfenylation of Alkenes: Development and Recent Advances, RSC Advances, 11: 32513-32525 (2021).
[64] Vessally E., Soleimani-Amiri S., Hosseinian A., Edjlali, L., Babazadeh, M., Chemical fixation of CO2 to 2-aminobenzonitriles: A Straightforward Route to quinazoline-2, 4 (1H, 3H)-diones with Green and Sustainable, J. CO2 Util. 21: 342-352 (2017).
[65] Arshadi S., Vessally E., Hosseinian A., Soleimani-Amiri S., Edjlali L. Three-Component Coupling of CO2, Propargyl Alcohols, and Amines: An Environmentally Benign Access to Cyclic and Acyclic Carbamates. J. CO2 Util., 21: 108-118 (2017).
[66] Kassaee M.Z., Buazar F., Soleimani-Amiri S. Triplet Germylenes with Separable Minima at AB Initio and DFT Levels. Journal of Molecular Structure, 866(1-3): 52-57 (2008).
[67] Kassaee M.Z., Aref Rad H., Soleimani Amiri, S. Carbon–Nitrogen Nanorings and Nanoribbons: A Theoretical Approach for Altering the Ground States of Cyclacenes and Polyacenes. Monatshefte für Chemie-Chemical Monthly, 141(12): 1313-1319 (2010).
[68] Koohi M., Soleimani Amiri S., Haerizade B.N., Substituent Effect on Structure, Stability, and Aromaticity of Novel BnNmC20–(n+m) Heterofullerenes. Journal of Physical Organic Chemistry, 30(11): e3682 (2017).
[70] Soleimani-Amiri S. Identification of Structural, Spectroscopic, and Electronic Analysis of …, Polycycl. Aromat. Comp., 41(3): 635-652 (2021).
[71] Poor Heravi M.R., Azizi B., Abdulkareem Mahmood E., Ebadi A.G., Ansari M.J., Soleimani-Amiri S. Molecular Simulation of the Paracetamol Drug Interaction with Pt-decorated BC3 Graphene-Like, Molecular Simulation, 48(6): 517-525 (2022).
[72] Soleimani Amiri S. Green Production and Antioxidant Activity Study of New Isoquinolines. J. Heterocyclic. Chem., 57(11): 4057-4069 (2020).
[73] Samiei Z., Soleimani-Amiri S., Azizi Z. Fe3O4@ C@OSO3H as an Efficient, Recyclable Magnetic Nanocatalyst in Pechmann Condensation: Green Synthesis, Molecular Diversity, 25(1): 67-86 (2021).
[74] Soleimani-Amiri S., Ghazvini M., Khandan S., Afrashteh S. KF/Clinoptilolite@ MWCNTs Nanocomposites Promoted a Novel Four-Component Reaction of Isocyanides for the Green Synthesis. Polycycl. Aromat. Comp: 1-16 (2021).
[75] Feizpour Bonab M., Soleimani-Amiri S., Mirza B., Fe3O4@ C@ PrS-SO3H: A Novel Efficient Magnetically Recoverable Heterogeneous Catalyst. Polycycl. Aromat. Comp: 1-16 (2022).
[76] Khoshtarkib Z., Ebadi A., Alizadeh R., Ahmadi R., Amani V., Dichloridobis (phenanthridine-κN) zinc (II). Acta Crystallographica Section E: Structure Reports Online, 65(7): m739-m740 (2009).
[77] Amani V., Ahmadi R., Naseh M., Ebadi A. Synthesis, Spectroscopic Characterization, Crystal Structure and Thermal Analyses of ... Journal of the Iranian Chemical Society, 14(3): 635-642 (2017).
[78] Ahmadi R., Khalighi A., Kalateh K., Amani V., Khavasi H.R. Ccatena-Poly [[(5, 5′-dimethyl-2, 2′-bipyridine-κ2N, N′) cadmium (II)]-di-μ-chlorido]. Acta Crystallographica Section E: Structure Reports Online, 64(10): m1233-m1233 (2008).
[79] Kadhim M.M., Mahmood E.A., Abbasi V., Poor Heravi M.R., Habibzadeh S., Mohammadi-Aghdam S., Shoaei S.M., Theoretical Investigation of the Titanium—Nitrogen Heterofullerenes Evolved from the Smallest Fullerene, J. Mol. Graph. Model., (2022).
[80] Hosseini S.M., Hosseini‐Monfared H., Abbasi V., Silver Ferrite–Graphene Nanocomposite and Its Good Photocatalytic Performance in Air and Visible…, Applied Organometallic Chemistry, 31(4): e3589 (2017).
[81] Abbasi V., Hosseini‐Monfared H., Hosseini S.M., Mn (III)‐Salan/Graphene Oxide/Magnetite Nanocomposite as a Highly Selective Catalyst for Aerobic Epoxidation of Olefins, Applied Organometallic Chemistry, 31(2):e3554 (2017).
[82] Abbasi V, Hosseini-Monfared H, Hosseini S.M., A Heterogenized Chiral Iimino Indanol Complex of Manganese as an Efficient Catalyst for Aerobic Epoxidation of Olefins, New Journal of Chemistry,
41(18): 9866-9874 (2017).
[83] Hosseini S.M., Hosseini-Monfared H., Abbasi V., Khoshroo M.R., Selective Oxidation of Hydrocarbons under Ar Using Recoverable Silver Ferrite–Graphene (AgFeO2–G) Nanocomposite: A Good Catalyst for Green …, Inorg. Chem. Comm. 67,:72-79 (2016).
[84] Hosseini Monfared H, Abbasi V, Rezaei A, Ghorbanloo M, Aghaei A, A Heterogenized Vanadium Oxo-aroylhydrazone Catalyst for Efficient and Peroxide…, Transition Metal Chemistry, 37(1):85-92 (2012).