Potential Use of Algerian Metallurgical Slag in the Manufacture of Sanitary Ceramic Bodies and Its Effect on the Physical-Mechanical and Structural Properties

Document Type : Research Article


1 Laboratory of Applied Energetics and Materials (LAEM), Faculty of Sciences and Technology, Process Engineering Department, MSBY Jijel University, ALGERIA

2 Laboratory of Interactions Material-Environment (LIME). Faculty of Sciences and Technology, Process Engineering Department, MSBY Jijel University, ALGERIA.

3 Laboratory of Civil Engineering and Environment (LCEE), Faculty of Sciences and Technology, Civil Engineering Department, MSBY Jijel University, ALGERIA.

4 Laboratory of Environment, Water Geomechanics and Structures (LEEGO), Faculty of Civil Engineering, USTHB, ALGERIA


A study of the partial substitution of feldspar by Blast Furnace Slag (BFS) and its effects on the properties of sanitary ceramics, has been carried out. Characterization of rheological behavior, thermal, structural, physical, and mechanical properties of fired sanitary-ware bodies, show that 10wt. % is the optimal value for BFS in the formulation of sanitary ceramic. DRX, SEM, and FT-IR analyses confirmed that the starting crystalline phases (quartz and mullite), with the gradual appearance of anorthite, allow a non-negligible improvement in flexural strength (33 to 38 MPa), and a reduction in water absorption (0.35 to 0.10 %). From DTA/TG data, a little change in weight loss during the firing process (8.83 to 9.66 wt. %), was recorded. The Na-electrolytes with a mass ratio Na2CO3/ Na2SiO3 = 1.5, and a combined mass percentage (0.375 wt. %), are found to give the optimum values for good quality sanitary ceramic slip.


Main Subjects

[1] Bomeni I.Y., Wouatong A.S.L., Ngapgue F., Kabeyene K.V., Fagel N., Mineralogical Transformation and Microstructure of the Alluvials Clays, Science of Sintering, 51: 57-70 (2019).
[2] Bernasconi A., Marinoni N., Pavese A., Francescon F., Young K., Feldspar and Firing Cycle Effects on the Evolution of Sanitary-Ware Vitreous Body, Ceramics International, 40: 6389–6398 (2014).
[3] Evcin A., Investigation of the Effects of Different Deflocculants on the Viscosity of Slips, Scientific Research and Essays, 6: 2302-2305 (2011).
[4] Hammadi L., Improving of the Mechanical and Rheological Properties of Slip of Ceramic, Construction and Building Materials, 173: 118-123 (2018).
[5] Silvestri L., Forcina A., Silvestri C., Ioppolo G., Life Cycle Assessment of Sanitaryware Production: A Case Study in Italy. Journal of Cleaner Production, 251: 119708 (2020).
[6] Boudeghdegh K., Diella V., Bernasconi A., Roula A., Amirouche Y., Composition Effects on the Whiteness and Physical-Mechanical Properties of Traditional Sanitary-Ware Glaze, Journal of the European Ceramic Society, 35: 3735-3741 (2015).
[7] Martín-Márquez J., Rincón J., Romero M., Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles, Ceramics International, 34: 1867-1873 (2008).
[8] Pal M., Das S., Gupta S., Das S.K., Thermal Analysis and Vitrification Behavior of Slag Containing Porcelain Stoneware Body, Journal of Thermal Analysis and Calorimetry, 124: 1169-1177 (2016).
[9] Zanelli C., Raimondo M., Guarini G., Dondi M., The vitreous Phase of Porcelain Stoneware: Composition, Evolution During Sintering and Physical Properties, Journal of Non-Crystalline Solids, 357: 3251-3260 (2011).
[11] Boussak H., Chemani H., Serier A., Characterization of Porcelain Tableware Formulation Containing Bentonite Clay, International Journal of Physical Sciences, 10: 38-45 (2015).
[13] Sglavo V.M., Maurina S., Conci A., Salviati A., Carturan G., Cocco G., Bauxite ‘Red Mud’in the Ceramic Industry. Part 2: Production of Clay-Based Ceramics, Journal of the European Ceramic Society, 20: 245-252 (2000).
[14] Zong Y.-b., Chen W.-h., Liu Y.-x., Xu X.-x., LIU Z.-b., Cang D.-q., Influence of Slag Particle Size on Performance of Ceramic Bricks Containing Red Clay and Steel-Making Slag, Journal of the Ceramic Society of Japan, 127: 105-110 (2019).
[15] Zimmer A., Bergmann C., Fly Ash of Mineral Coal as Ceramic Tiles Raw Material, Waste Management, 27: 59-68 (2007).
[16] Olgun A., Erdogan Y., Ayhan Y., Zeybek B. Development of Ceramic Tiles from Coal Fly Ash and Tincal ore Waste, Ceramics International, 31: 153-158 (2005).
[17] Azevedo A.R.G., Vieira C.M.F., Ferreira W.M., Faria K.C.P., Pedroti L.G., Mendes B.C., Potential Use of Ceramic Waste as Precursor in the Geopolymerization Reaction for the Production of Ceramic Roof Tiles, Journal of Building Engineering, 29: 101156 (2020).
[18] El-Fadaly E., Characterization of Porcelain Stoneware Tiles Based on Solid Ceramic Wastes, International Journal of Science and Research (IJSR) ISSN, 2319-7064 (2013).
[19] Gol F., Yilmaz A., Kacar E., Simsek S., Sarıtas Z.G., Ture C., et al. Reuse of Glass Waste In The Manufacture of Ceramic Tableware Glazes, Ceramics International, 47: 21061-21068 (2021).
[20] Marinoni N., D'Alessio D., Diella V., Pavese A., Francescon F., Effects of Soda–Lime–Silica Waste Glass on Mullite Formation Kinetics and Micro-Structures Development in Vitreous Ceramics, Journal of Environmental Management, 124: 100-107 (2013).
[21] Dana K., Dey J., Das S.K., Synergistic Effect Of Fly Ash and Blast Furnace Slag on the Mechanical Strength of Traditional Porcelain Tiles, Ceramics International, 31: 147-152 (2005).
[22] Rahou J., Rezqi H., El Ouahabi M., Fagel N., Characterization of Moroccan Steel Slag Waste:
The Potential Green Resource for Ceramic Production
, Construction and Building Materials, 314: 125663 (2022).
[23] Rakhimova N.R., Recent Advances in Blended Alkali-Activated Cements: A Review, European Journal of Environmental and Civil Engineering, 1-23 (2020).
[24] Alioui H., Chiker T., Saidat F., Lamara M., Aggoun S., Hamdi O.M., Investigation of the Effect of Commercial Limestone on Alkali-Activated Blends Based on Algerian Slag-Glass Powder, European Journal of Environmental and Civil Engineering,
1-24 (2021).
[25] Dana K., Das S.K., Partial Substitution of Feldspar by BF Slag in Triaxial Porcelain: Phase and Microstructural Evolution, Journal of the European Ceramic Society, 24: 3833-3839 (2004).
[26] Ma J., Shi Y., Zhang H., Ouyang S., Deng L., Chen H., et al. Crystallization of CaO–MgO–Al2O3–SiO2 Glass Ceramic Derived from Blast Furnace Slag via One-Step Method, Materials Chemistry and Physics, 261: 124213 (2021).
[27] Ozturk Z.B., Gultekin E.E. Preparation of Ceramic Wall Tiling Derived from Blast Furnace Slag, Ceramics International, 41: 12020-12026 (2015).
[28] Lopez-Perales J., Contreras J.E., Vazquez-Rodríguez F., Gómez-Rodríguez C., Diaz-Tato L., Banda-Muñoz F., et al. Partial replacement of a Traditional Raw Material by Blast Furnace Slag in Developing a Sustainable Conventional Refractory Castable of Improved Physical-Mechanical Properties, Journal of Cleaner Production, 306: 127266 (2021).
[29] Aydin T., Casin E., Mixed Alkali and Mixed Alkaline-Earth Effect in Ceramic Sanitaryware Bodies Incorporated with Blast Furnace Slag, Waste and Biomass Valorization, 12: 2685-2702 (2021).
[30] ASTM C., “Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products”. West Conshohocken, Pennsylvania, US: ASTM International. C373-88. (2006).
[31] El-Fadaly E.A., Askar A.S., Aly M.H., Ibrahim D.M., “Rheological, Physico-Mechanical and Microstructural Properties of Porous Mullite Ceramic Based On Environmental Wastes”, Boletín de la Sociedad Española de Cerámica y Vidrio, (2020).
[33] Ozdemir I., Yilmaz S., Processing of Unglazed Ceramic Tiles From Blast Furnace Slag, Journal of Materials Processing Technology, 183: 13-17 (2007).
[34] Zhao L., Li Y., Zhou Y., Cang D., Preparation of Novel Ceramics With High CaO Content from Steel Slag, Materials & Design, 64: 608-613 (2014).
[35] ASTM, A. C326—Test Method for Drying and Firing Shrinkage of Ceramic Whiteware Clays, In: American Society for Testing and Materials, (1997).
[36] Martini E., Fortuna D., Fortuna A., Rubino G., Tagliaferri V., Sanitser, an Innovative Sanitary Ware Body, Formulated with Waste Glass and Recycled Materials, Cerâmica, 63: 542-548 (2017).
[37] Ismail M., Nakai Z., Sōmiya S. Microstructure and Mechanical Properties of Mullite Prepared by the Sol‐Gel Method, Journal of the American Ceramic Society, 70: C‐7-C‐8 (1987).
[38] Kurama S., Ozel E., The Influence of Different CaO Sources in the Production of Anorthite Ceramics, Ceramics International, 35: 827-830 (2009).
[39] Carbajal L., Rubio-Marcos F., Bengochea M., Fernandez J., Properties Related Phase Evolution
in Porcelain Ceramics
, Journal of the European Ceramic Society, 27: 4065-4069 (2007).
[40] Romero M., Perez J.M., Relación Entre La Microestructura Y Las Propiedades Tecnológicas En Gres Porcelánico. Revisión Bibliográfica, Materiales de Construcción, 65: e065 (2015).
[41] Iqbal Y., Lee W., Microstructural Evolution in Triaxial Porcelain, Journal of the American Ceramic Society, 83: 3121-3127 (2004).
[43] Martín-Márquez J., Rincón J.M., Romero M., Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles, Ceramics International, 34: 1867-1673 (2008).
[44] Roy J., Maitra S., Non-Isothermal Dehydration Kinetics of Diphasic Mullite Precursor Gel, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(4): 91-100 (2019).
[45] Adeniyi F.I., Ogundiran M.B., Synthesis of Geopolymer Binders and Mortars from Ijero-Ekiti Calcined Clay, Blast Furnace Slag and River Sand, Earthline Journal of Chemical Sciences, 4: 15-34 (2020).
[46] Roy J., Bandyopadhyay N., Das S., Maitra S., Studies on the Formation of Mullite from Diphasic Al2O3-SiO2 Gel by Fourier Transform Infrared Spectroscopy, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 30: 65-71 (2011).
[47] Ismail I., Bernal S.A., Provis J.L., San Nicolas R., Hamdan S., van Deventer J.S., Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag
by the Incorporation of Fly Ash
, Cement and Concrete Composites, 45: 125-135 (2014).
[48] Gören R., Ersoy B., Özgür C., Alp T., Colloidal Stability–Slip Casting Behavior Relationship in Slurry of Mullite Synthesized by the USP Method, Ceramics International, 38: 679-685 (2012).
[49] Nilforoushan M.R., Otroj S., Talebian N., The Study of Ion Adsorption by Amorphous Blast Furnace Slag, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 34(1): 57-64 (2015).
[50] Joni I.M., Nulhakim L., Vanitha M., Panatarani C., Characteristics of Crystalline Silica (SiO2 ) Particles Prepared by Simple Solution Method Using Sodium Silicate (Na2SiO3 ) Precursor, Journal of Physics: Conference Series, 1080: 012006 (2018).
[51] Raizada P., Shandilya P., Singh P., Thakur P., Solar Light-Facilitated Oxytetracycline Removal from the Aqueous Phase Utilizing a H2O2/ZnWO4/CaO Catalytic System, Journal of Taibah University for Science, 11 (2016).
[52] Ghadami Jadval Ghadam A., Idrees M., Characterization of CaCO3 Nanoparticles Synthesized by Reverse Microemulsion Technique in Different Concentrations of Surfactants, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(3): 27-35 (2013).