Rise and Deformation Modeling of Single Droplet Motion in Yield Stress Fluids by Using Aspect Ratio and Dimensionless Numbers

Document Type : Research Article

Authors

College of Energy and Environment, Shenyang Aerospace University, Shenyang 110000, P.R. CHINA

Abstract

The motion of a single droplet rising in quiescent yield stress fluids was investigated experimentally. By using a high-speed camera to follow the rising droplet, the images of the recorded frames were digitized and analyzed using MATLAB, and the aspect ratio and terminal velocity of the droplets were obtained. The results show that the droplet aspect ratio decreases with the increase of dimensionless numbers such as Eötvös number and Tadaki number, and the droplet gradually changes from spherical to ellipsoidal. The larger the yield stress, the larger the Bingham number, which limits the lateral stretching of the droplet, and the droplet shows a spherical shape. The experimental drag coefficient and aspect ratio were compared with correlations in literature, and the comparison showed that these correlations do not give fully satisfactory results in predicting the drag coefficient and aspect ratio of droplet rising in yield stress fluid, showing a big relative error. Therefore, two new empirical correlations were proposed to predict the aspect ratio and the drag coefficient, respectively. It was found that the calculated results by the present correlation agree well with the experimental data.

Keywords

Main Subjects


[1] Shima E.R., Shahab G., Ali A.S., Ali R.B., Mostafa G.G., Experimental Study on Enhanced Oil Recovery by Low Salinity Water Flooding on the Fractured Dolomite Reservoir, Iran. J. Chem. Chem. Eng. (IJCCE), 40(5): 1703-1719 (2021).
[3] Kouissi T., Bouanz M., Ouerfelli N., KCl-Induced Phase Separation of 1,4-Dioxane + Water Mixtures Studied by Electrical Conductivity and Refractive Index, J. Chem. Eng. Data., 54: 566-573 (2009).
[4] Majid M., Babak A., Ashkan G., Liquid-Liquid Extraction in a Microextractor: A Laboratory Examination and Thermodynamic Modeling of N-Hexane + Benzene + Sulfolane System, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 657-666 (2021).
[5] Zhang J.Y.Z., Wang Y.D., Stevens G.W., Fei W.Y., An Experimental Study on Single Drop Rising in a Low Interfacial Tension Liquid–Liquid System, Chem. Eng. Res. Des., 148: 349-360 (2019).
[6] Bäumler K., Wegener M., Paschedag A.R., Bänsch E., Drop Rise Velocities and Fluid Dynamic Behavior
in Standard Test Systems for Liquid/liquid Extraction-Experimental and Numerical Investigations,
Chem. Eng. Sci., 66(3): 426-439 (2011). 
[7] Eiswirth R.T., Bart H.J., Atmakidis T., Kenig E.Y., Experimental and Numerical Investigation of a Free Rising Droplet, Chem. Eng. Process., 50(7): 718-727 (2011).
[8] Wegener M., Kraume M., Paschedag A.R., Terminal and Transient Drop Rise Velocity of Single Toluene Droplets in Water, AIChE J., 56(1): 2-10 (2010). 
[9] Taylor T.D., Acrivos A., On the Deformation and Drag of a Falling Viscous Drop at Low Reynolds Number, J. Fluid Mech., 18(3): 466-476 (1964). 
[10] Wairegi T., Grace J.R., The Behavior of Large Drops in Immiscible Liquids, Int. J. Multiphase Flow, 3(1): 67-77 (1976). 
[11] Liu L.L., Tang H., Quan S.P., Shapes and Terminal Velocities of a Drop Rising in Stagnant Liquids, Comput. Fluids, 81:17-25 (2013). 
[13] Wegener M., Fevre M., Paschedag A.R., Kraume M., Impact of Marangoni Instabilities on the Fluid Dynamic Behaviour of Organic Droplets, Int. J. Heat Mass Tran., 52(11-12): 2543-2551 (2009). 
[14] Jie Y., Fei W.Y., Li H.Z., Effect of Packing on Drop Swarms Extraction of High Viscosity Solvents, Hydrometallurgy, 78(1-2): 30-40 (2005).
[15] Beris A.N., Tsamopoulos J.A., Armstrong R.C., Brown R.A., Creeping Motion of a Sphere Through a Bingham Plastic, J. Fluid Mech., 158(-1): 219-44 (1985). 
[16] Dubash N., Frigaard I.A., Propagation and Stopping of Air Bubbles in Carbopol Solutions, J. Non-Newtonian Fluid., 142(1-3): 123-134 (2007).
[17] Lavrenteva O.M., Hollenberg Y., Nir A., Motion of Viscous Drops in Tubes Filled with Yield Stress Fluid, Chem. Eng. Sci., 64: 4772–4786 (2009). 
[18] Sarabian M., Rosti M.E., Brandt L., Hormozi S., Numerical Simulations of a Sphere Settling in Simple Shear Flows of Yield Stress Fluids, J. Fluid Mech., 896: A17 (2020).
[19] Kishore N., Chhabra R.P., Eswaran V., Drag on a Single Fluid Sphere Translating in Power-law Liquids at Moderate Reynolds Numbers, Chem. Eng. Sci., 62(9): 2422-2434 (2007). 
[20] Saboni A., Alexandrova S., Numerical Study of the Drag on a Fluid Sphere, AIChE J., 48(12): 2992-2994 (2002).
[21] Oliver D.L.R., Chung J.N., Flow about a Fluid Sphere at Low to Moderate Reynolds Numbers, J. Fluid Mech., 154(-1): 1-18 (1985). 
[22] Feng Z.G., Michaelides E.E., Drag Coefficients of Viscous Spheres at Intermediate and High Reynolds Numbers, J. Fluid Eng., 123(4): 841-849 (2001).
[23] Sikorski D., Tabuteau H., Bruyn J.R., Motion, and Shape of Bubbles Rising Through a Yield-Stress Fluid, J. Non-Newtonian Fluid Mech., 159: 10–16 (2009).
[24] Stokes J.R., Telford J.H., Measuring the Yield Behaviour of Structured Fluids, J. Non-Newtonian Fluid Mech., 124: 137–146 (2004).
[25] Atapattu D.D., Chhabra R.P., Uhlherr P., Wall Effect for Spheres Falling at Small Reynolds Number in a Viscoplastic Medium, J. Non-Newtonian Fluid., 38(1): 31-42 (1990).
[26] Nirmalkar N., Chhabra R.P., Poole R.J., Numerical Predictions of Momentum and Heat Transfer Characteristics from a Heated Sphere in Yield-Stress Fluids, Ind. Eng. Chem. Res.52(20): 6848–6861 (2013).
[27] Clift R., Grace J.R., Weber M.E., Bubbles, drops, and particles. Academic Press, New York USA, (1978).
[28] Wellek R.M., Agrawal A.K., Skelland A.H.P., Shape of Liquid Drops Moving in Liquid Media, AIChE J., 12(5): 854-862 (1996).
[29] Tadaki T., Maeda S., On the Shape and Velocity of Single Air Bubbles Rising in Various Liquids, Chem. Eng., 25(4):254-264 (1961).
[30] Myint W., Hosokawa S., Tomiyama A., Shapes of Single Drops Rising Through Stagnant Liquids, J. Fluid Sci. Technol, 2(1):184-195 (2007).
[31] Albert C., Kromer J., Robertson A.M., Bothe D., Dynamic Behavior of Buoyant High Viscosity Droplets Rising in a Quiescent Liquid, J. Fluid Mech., 778: 485-533 (2015).
[32] Dong H.F., Wang X.L., Liu L., Zhang X.P., Zhang S.J., The Rise and Deformation of a Single Bubble in Ionic Liquids, Chem. Eng. Sci., 65(10):3240-3248 (2010).
[33] Hadamard J.S., Movement Permanent Lent D'une Sphère Liquide et Visqueuse Dans un Liquide Visqueux, Comp. trend. Acad. Sci. Paris, 152: 1735-1738 (1911).