Investigation of Operating Parameters’ Effects on Bubble Characteristics in a Co-Current Downflow Bubble Column

Document Type : Research Article


1 CSIR- National Metallurgical Laboratory (NML), Jamshedpur- 831007, INDIA

2 Chemical Engineering Department, Indian Institute of Technology (IIT) Kharagpur- 721302, INDIA


Bubble columns are frequently employed as multiphase reactors and gas-liquid contactors. In the bubble column, gas is dispersed into the liquid phase. The dispersion of gas into a liquid is the function of bubble size and its distribution. It also includes the complex process of coalescence and the break up of bubbles. The present research intends to examine the operating parameters' effect, including temperature on bubble characteristics in the ejector-induced downflow bubble column (i. d. 0.05 m X 1.6 m height) via Computational Fluid Dynamics (CFD) and experimental methods. Bubbles inside the column are analyzed and mean bubble diameters are obtained using a photographic technique. The effect of superficial gas velocity (4.25×10−3-9.68×10−3 m/s) and liquid velocity (8.5×10−2-14.11×10−2 m/s) on an average Sauter diameter is studied. The gas holdup variation with temperature (60-80 oC) is also examined. The temperature distribution at different axial locations (0.48-1.35 m) from the top of the column is observed using the CFD model. An empirical model for predicting the temperature, i.e., Tr (T/Tset), is proposed as a function of the Prandtl number, Weber number, Reynolds number, and Froude number.


Main Subjects

[1] Kalaga D., Ansari M., Turney D., Hernandez-Alvarado F., Kleinbart S., Arun Kumar K., Joshi J., Banerjee S., Kawaji M.; Scale-up of a Downflow Bubble Column: Experimental Investigations, Chem. Eng. J., 386: 121447 (2020).
[2] Vázquez G., Cancela M., Riverol C., Alvarez E., Navaza J., Determination of Interfacial Areas in a Bubble Column by Different Chemical Methods, Ind. Eng. Chem. Res., 39(7): 2541-2547 (2000).
[3] Ghiassi S., Safekordi A., Babazadeh Shareh F.; Determination of Interfacial Area in Gas-Liquid Two-Phase by Light Transmission, Iran. J. Chem. Chem. Eng. (IJCCE), 31(1): 81-87 (2012).
[4] Majumder S.; "Hydrodynamics and Transport Processes of Inverse Bubbly Flow", Netherlands: Elsevier Science (2016).
[5] Kanaris A., Pavlidis T., Chatzidafni A., Mouza A.; The Effects of the Properties of Gases on the Design of Bubble Columns with a Fine Pore Sparger, Chem. Eng., 2(1):11 (2018).
[6] Youssef A., Al-Dahhan M., Impact of Internals on the Gas Holdup and Bubble Properties of a Bubble Column, Ind. Eng. Chem. Res., 48(17): 8007-8013 (2009).
[7] Tao F., Ning S., Zhang B., Jin H., He G.; Simulation Study on Gas Holdup of Large and Small Bubbles in a High Pressure Gas-Liquid Bubble Column, Processes, 7(9): 594 (2019).
[8] Jha A., Raj Mohan B., Chakraborty S., Meikap, B.; Studies on Gas Holdup in a Bubble Column Using Porous Spargers with Additives, Asia-Pacific J. of Chem. Eng., 3(4): 417-424 (2008).
[9] Tran B., Nguyen D., Ngo S., Lim Y., Kim B., Lee D., Go K., Nho N.; Hydrodynamics and Simulation of Air‐Water Homogeneous Bubble Column Under Elevated Pressure, AIChE J, 65(10): e16685 (2019).
[10] Patel D., Chaudhari A., Laari A., Heilio M., Hamalainen J. and Agrawal K., Numerical Simulation of Bubble Coalescence and Break-Up in Multinozzle Jet Ejector, J. Appl. Math., Article ID 5238737: 1-19 (2016).
[11] Mutharasu L.C., Kalaga D.V., Sathe M., Turney D.E., Griffin D., Li X., Kawaji M., Nandakumar K., Joshi J.B., Experimental Study and CFD Simulation of the Multiphase Flow Conditions Encountered in a Novel Down-Flow Bubble Column, Chem. Eng. J., 350: 507-522 (2018).
[12] Saad N.S., Ahmed A. Mohammed, Farah K. Al-Jubory, Shahzad Barghi; CFD Assessment of Uniform Bubbly Flow in a Bubble Column, J. Pet. Sci. Eng., 161: 96-107 (2018).
[13] Meshram R. B., Kundu G., Mukherjee D.; Heat Transfer Studies in Ejector-Induced Downflow Bubble Column, Int. J. Chem. React. Eng., 14(5): 955-964 (2016).
[14] Kundu G., Mukherjee D., Mitra A. K., Experimental Studies on a Concurrent Gas-Liquid Downflow Bubble Column, Int. J. Multiph. Flow, 21: 893-906 (1995).
[16] Majumder S. K., Kundu G., Mukherjee D., Bubble Size Distribution and Gas-Liquid Interfacial Area
in a Modified Downflow Bubble Column
, Chem. Eng. J., 122 (1-2) : 1-10 (2006).
[17] Beth J., Walter M., Branson D., Michael L., Michael Pm, Feasibility of an in Situ Measurement Device for Bubble Size and Distribution, Bioprocess Biosyst Eng., 30(5): 313-326 (2007).
[18] Polli M., Di Stanislao M., Bagatin R., Abu Bakr E., Masi M., Bubble Size Distribution in the Sparger Region of Bubble Columns, Chem. Eng. Sci., 57: 197-205 (2002).
[19] Mandal A., Characterization of Gas-Liquid Parameters in a Down-Flow Jet Loop Bubble Column, Braz. J. Chem. Eng., 27(02): 253 – 264 (2010).
[21] Camacho O., Gutiérrez-Rojas M., Torrez-Martínez D., Lizardi-Jiménez M., Gas Hold Up in the Cultivation of a Petroleum-Degrading Bacterial Consortium, Environ. Eng. Manag. J., 17(5): 1209-1216 (2018).
[22] Hernandez-Alvarado Freddy, Kalaga Dinesh V., Turney Damon, Banerjee Sanjoy, Joshi Jyeshtharaj B., Kawaji Masahiro, Void Fraction, Bubble Size and Interfacial Area Measurements in Co-Current Downflow Bubble Column Reactor with Microbubble Dispersion, Chem. Eng. Sci., 168: 403-413 (2017).
[23] Rakoczy R., Masiuk S., Experimental Study of Bubble Size Distribution in a Liquid Column Exposed to a Rotating Magnetic Field, Chem. Eng. Process., 48(7): 1229-1240 (2009).
[24] Upadhyay R. K., Kaim J. and Roy S., Investigation of Downflow Bubble Columns: Experiments and Modeling, J. Chem. Eng. Jpn., 42: 156–161 (Supplement 1) (2009).