The Rheological Behavior of Wheat Starch Particulates Filled Uncured Styrene-Butadiene Rubber

Document Type : Research Article


1 Université Ferhat Abbas Sétif-1, Faculté de Technologie, Département de Génie des Procédés, Maabouda, Route de Bejaïa, Sétif 19000, ALGERIA

2 Département de génie des procédés, Faculté de Technologie, Université Ferhat Abbas de Sétif-1

3 Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC. Juan de la Cierva 3, 28006-Madrid, SPAIN


This study treats one important aspect of starch-filled rubber compounds which is their rheological behavior. Starch-based SBR1712 masterbatches resulting from various formulations were prepared using a mini two roll mill and an internal mixer (Plastograph Brabender).The content in starch was varied from 0 to 50 phr. The effect of starch content on the rheological behavior was evaluated through the flow characteristics in the temperature range (130-160 °C) which matches that used in the vulcanization process. Four experimental techniques were considered to assess the mixing and the flow behavior of the materials: 1) Brabender mixer, 2) melt flow index, 3) capillary rheometer and finally 4) dynamic rheological properties through strain sweep experiments using a plate-plate rheometer. It came out that the four techniques used in the assessment of the rheological behavior of such materials are appropriate, complementary and successful. The melt flow index and viscosity measurements indicate a resistant flow for the rubber and its starch composites. Even high temperatures do not seem to reduce the viscosity considerably. Nevertheless, small amounts of starch incorporated in the gum will ease the flow to some extent. The materials showed a pseudoplastic behavior, and storage made a slight change in their melt flow index.  Morphological studies showed that the particles of starch were not destructed during the mixing and their interaction with the rubbery matrix is very poor.


Main Subjects

[1] Thorn A. D., Robinson R. A., “Compound design”, In: Bhowmink A. K., Hall. M. M., Benarey. H. A., “Rubber Products Manufacturing Technology” Marcel Dekker, New York (1994).
[2] Railsback H. E., Howard W. S., Stumpe N. A., Butadiene-Styrene Copolymers, Rubber Age (RA), 46-55 (1974).
[3] Rouilly A., Rigal L., Agro-Materials, J. Macromol. Sci.(JMS), 42 (4): 441–479 (2002).
[4] Boonstra B. B., Role of Particulate Fillers in Elastomer Reinforcement, J. Polym.(JP), 20: 691-704 (1979).
[5] Leblanc J. L., Rubber-Filler Interactions and Rheological Properties in Filled Compounds, J. Prog. Polym. Sci.(JPPS), 27: 627-687 (2002).
[6]  Arrighi V., McEwen I. J., Qian H., Serrano Prieto M. B., The Glass Transition and Interfacial layer in  Styrene-Butadiene Rubber Containing Silica Nanofiller, J. Polym.(JP), 44: 6259– 6266 (2003).
[7]  Anoop A.K., Sunil J.T., Rosamma A., Rani J., Natural Rubber-Carbon Nanotube Composites Through Latex Compounding, Int. J. Polym. Mater.(IJPM), 59: 33–44 (2010).
[8] Sengloyluan K., Sahakaro K., Dierkes W. K., Noordermeer J.W.M., Silica Reinforced Tire Tread Compounds Compatibilised by Using Epoxidised Natural Rubber, Eur. Polym. J.(EPJ), 51: 69–79 (2014).
[10] Torabi Angaji M., Hagheeghatpadjooh H. R.,  Preparation of Biodegradable Low-Density Polyethylene by Starch-Urea Composition for Agricultural Applications, Iran. J. Chem. Chem. Eng. (IJCCE), 23(1): 7-11 (2004).
[11] Rouba  N., Sadoun T., Boutagrabet N., Kerrouche D., Zadi S., Mimi N., Thermo-Oxidation and Biodegradation Study of Low-Density Polyethylene /Starch Films by IR Spectroscopy, Iran. J. Chem. Chem. Eng. (IJCCE), 34: 69-78 (2015).
[12] Xie F., Pollet E., Halley P. J., Avérous L., Starch-Based Nano-Biocomposites, Prog. Polym. Sci.(PPS), 38: 1590-1628 (2013).
[13] Liu H., Xie F., Yu L., Chen L., Li L., Thermal Processing of Starch-Based Polymers, Prog. Polym. Sci. (PPS), 34: 1348-1368 (2009).
[14]  Belarbi A., Haye B., Lévêque C., "L’amidon et ses Dérivés, Application Industrielle", Elsevier, Paris (2000).
[15] Wu Y. P., Ji M. Q., Qi Q., Wang Y. Q., Zhang L.Q. Preparation, Structure, and Properties Starch/Rubber Composites Prepared by co-Coagulating Rubber Latex and Starch Paste, Macromol. Rapid. Commun.(MRC), 25: 565-570 (2004).
[16] Tang H., Qi Q., Wu Y., Liang G., Zhang L., Ma J., Reinforcement of Elastomer by Starch, Macromol. Mater. Eng. (MME), 291: 629-637 (2006).
[17] Wu Y. P., Qi Q., Liang G. H., Zhang L. Q., A Strategy to Prepare High-Performance Starch/Rubber Composites: In Situ Modification During Latex Compounding Process, Carbohydr. Polym.(CP), 65: 109-113 (2006).
[18] Qi Q., Wu Y., Tian M., Liang G., Zhang L., Ma J., Modification of Starch for High-Performance Elastomer, J. Polym. (JP), 47: 3896-3903 (2006).
[19] Angellier H., Molina-Boisseau S., Lebrun L., Dufresne A., Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber, J. Macromol.(JM),38: 3783-3792 (2005).
[20] Buchanan R.A., Kwolek W.F., Katz H.C.,Russell C.R., Influence of Starch Type and Concomitant Variables in Reinforcement of Styrene-Butadiene Rubbers, Die/Stärke (DS), 23: 350-359 (1971).
[21] Buchanan R. A., Starch Xanthide Styrene-Butadiene Rubbers: Effect of Prolonged Water Immersion, Die/Stärke (DS), 26: 165-172 (1974).
 [22]  Katz H. C., Kwolek W. F., Buchanan R. A., Doane W. M., Russell C. R., Influence of Amylose Content of Starch Upon the Water Resistance of Starch-Reinforced Styrene-Butadiene Rubbers, Die/Stärke (DS), 26: 201-206 (1974).
[23]  Buchanan R. A., McBrien J., Otey F. H., Russell C. R., Starch Xanthide Styrene-Butadiene Rubbers: Effet of Humidity and Outdoor Weathering, J. Starch/Stärk (JSS), 30: 91-96 (1978).
[24]  Rajisha K. R., Maria H. J., Pothan L. A.; Ahmad Z., Thomas S., Preparation and Characterization of Potato Starch Nanocrystal Reinforced Natural Rubber Nanocomposites, Int. J. Biolog. Macromol.(IJBM), 67: 147–153 (2014).
[25] Déborah L. C., Angellier-Coussy H., Preparation and Application of Starch Nanoparticles for Nanocomposites: A Review, React. Funct. Polym. (RFP), 85: 97–120 (2014).
[26] Corvasce F. G., Linster T. D., Thielen G., (Goodyear Co.), Starch Composite Reinforced Rubber Composition and Tire with at Least One Component Thereof: U.S. Patent 5,672,639, September 30 (1997).
[27]  Materne T. F. E., Corvasce F. G., (Goodyear Co.), Tire with Tread of Rubber Composition Prepared with Reinforcing Fillers which Include Starch/Plasticizer Composite: U.S. Patent 6,273,163, August 14 (2001).
[28] Sandstrom P.H., (Goodyear Co.), Rubber Containing Starch Reinforcement and Tire Having Component Thereof: U.S. Patent 6,391,945, May 21 (2002).
[29] Pawlikowski J. F., (Bridgestone/Firestone North American Tire, LLC), Vulcanizable Elastomer Compositions Containing Starch/Styrene Butadiene Rubber Copolymer as a Reinforcing Filler: U.S. Patent 6,548,578, April 15 (2003).
[30] Choi S.S., Nah C., Lee S.G., Joo C.W., Effect of Filler-Filler Interaction on Rheological Behaviour of Natural rubber Compounds Filled with Both Carbon Black and Silica, J. Polym. Int. (JPI), 52: 23-28 (2003).
[31] Demirhan E., Kandemirli F., Kandemirli M., Kovalishyn V., Investigation of the Physical and Rheological Properties of SBR-1712 Rubber Compounds by Neural Network Approaches, J. Mater. Des.(JMD), 28: 1737-1741 (2007).
 [32] Demirhan E., Kandemirli F., Kandemirli M., The Effects of Furnace Carbon Blacks on the Mechanical and the Rheological Properties of SBR1502 Styrene Butadiene Rubber, J. Mater. Des. (JMD), 28: 1326-1329 (2007).
[33] Ponnamma D.,Sung S. H., Hong J.S., Ahn, K.H., Varughese K.T., Thomas S., Influence of Non-Covalent Functionalization of Carbon Nanotubes on the Rheological Behavior of Natural Rubber Latex Nanocomposites, Eur. Polym. J. (EPJ), 53: 147–159 (2014).
[34] Colonna P., Doublier J. L., Melcion J. P., de Monredon F., Mercier C., Extrusion Cooking and Drum Drying of Wheat Starch. I. Physical and Macromolecular Modifications, Cereal Chem. 61(6): 538-543 (1984).
[35] Cogswell F. N., "Polymer Melt Rheology: A Guide for Industrial Practice", Woodhead Publishing House, Cambridge (1981).
[36] Han C.D., "Rheology in Polymer Processing", Academic Press, New York (1976).
[37] Cotten G. R., Mixing of Carbon Black with Rubber: Measurement of Dispersion Rate by Changes in Mixing Torque, J. Rub. Chem. Technol. (JRCT), 57: 118-133 (1984).
[38] Ceseracciu L., Heredia-Guerrero J.A., Dante S., Athanassiou A., Bayer I.S., Robust and Biodegradable Elastomers Based on Corn Starch and Polydimethylsiloxane (PDMS),   Applied Materials & Interfaces, 7(6):  3742-3753 (2015).
[39] Birsaw G., Shogren R., Friction Properties of Chemically Modified Starch, J. Synthetic Lubrication (JSL), 25: 17-30 (2008).
[40] Franta I., "Elastomer and Rubber Compounding Materials", Elsevier, New York (1989).ISBN 0-444-42994-8
[41] Leblanc J. L., Cartault M., Advanced Torsional    Dynamic Methods to Study the Morphology of Uncured Filled Rubber Compounds, J. Appl. Polym. Sci. (JAPS), 80: 2093-2104 (2001).