Lipophilicity and Biological Activity Study of Several Caspofungin Antifungal Drugs Using QSAR and Monte Carlo Methods

Document Type : Research Article


Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, I.R. IRAN


QSAR investigations of Caspofungin derivatives were conducted using Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Monte Carlo Methods. The obtained results were compared and GA-ANN and ICA-MLR combinations showed the best performance according to its correlation coefficient (R2) and Root Mean Sum Square Errors (RMSE). The most important physicochemical and structural descriptors were presented and discussed. Monte Carlo method revealed that the presence of a double bond with branching, a six-member cycle, the absence of halogens, the presence of sp2 carbon connected to branching, the presence of Nitrogen and Oxygen atoms, absence of Sulphur and Phosphorus are the most important molecular features. The best Caspofungin derivative was exposed to reaction with Cu, Zn, Fe using B3lyp/6-311g/lanl2dz to investigate the stability of the formed complexes, from which the Zn complex was perceived to be the most stable one. It was concluded that QSAR study and the Monte Carlo method can lead to a more comprehensive understanding of the relation between physicochemical, structural, or theoretical molecular descriptors of drugs to their biological activities and Lipophilicity.


Main Subjects

[1] Cornely O.A., Bassetti M., Calandra T., Garbino J., Kullberg B.J., Lortholary O., W Meersseman, Akova M., Arendrup M.C., Arikan-Akdagli S., Bille J., Castagnola E., Cuenca-Estrella M., Donnelly J.P., Groll A.H., Herbrecht R., Hope W.W., Jensen H.E., Lass-Flörl C., Petrikkos G., Richardson M.D., Roilides E., Verweij P.E., Viscoli C., Ullmann A.J., ESCMID Guideline for the Diagnosis and Management of Candida Diseases 2012: Nonneutropenic Adult Patients, Clin. Microbiol. Infect., 18: 19-37 (2012).
[3] Latg J-P., The Cell Wall: A Carbohydrate Armour for the Fungal Cell, Mol. Microbiol, 66: 279-290 (2007).
[4] Letscher-Bru V., Herbrecht R., Caspofungin: the First Representative of a New Antifungal Class, J. Antimicrob. Chemother., 51: 513-521 (2003).
[5] Wang R., Fu Y., Lai L., A New Atom-Additive Method for Calculating Partition Coefficients, J. Chem. Inf. Comput. Sci., 37: 615-621 (1997).
[6] Wang R., Gao Y., Lai L., Calculating Partition Coefficient by Atom-Additive Method. Drug Discov. Des., 19: 47-66 (2000).
[7] Sangster J., “Octanol–Water Partition Coefficients: Fundamentals and Physical Chemistry”, Wiley Series in Solution Chemistry, Chichester: John Wiley & Sons Ltd, 184 (1997).
[8] Shargel L., Susanna WP., Yu AB., “Applied Biopharmaceutics & Pharmacokinetics (6th ed.)”, McGraw-Hill Medical, New York, (2012).
[9] Moriguchi I., Hirono S., Liu Q., Nagakome I., Matushita Y., Comparison of Reliability of log P Values for Drugs Calculated by Several Methods, Chem. Pharm. Bull., 42: 976 (1994).
[11] Sahebjamee H., Yaghmaei P., Abdolmaleki P., Foroumadi A.R., Quantitative Structure-Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model, Iran. J. Chem. Chem. Eng. (IJCCE), 32: 19-29 (2013).
[12] Ugochukwu Ibeji C.,  Oguejiofo U.,  Chukwuma Chime C., Godfrey Akpomie K., Onyinye Anarado C.J., Abiola Odewole O., Grishina M.,  Potemkin V., Dehydroacetic Acid-Phenylhydrazone as a Potential Inhibitor for Wild-Type HIV-1 Protease: Structural, DFT, Molecular Dynamics, 3D QSAR and ADMET Characteristics, Iran. J. Chem. Chem. Eng. (IJCCE), 40: 215-230 (2021).
[13] Černý V., Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm., J. Optimiz. Theory. App., 45: 41-51 (1985).
[14] Schmitt L.M., Theory of genetic Algorithms. Theor. Comput. Sci., 259: 1-61 (2001).
[15] Bertsimas D., Tsitsiklis J., Simulated Annealing., Statist. Sci., 8: 10-15 (1993).
[16] Meanwell N.A., Wallace O.B., Fang H., Wang H., Deshpande M., Wang T., Yin Z., Zadjura L., Tweedie D.L., Yeola S., Zhao F., Ranadive S., Robinson BA., Gong Y.F., Wang H.G., Spicer T.P., Blair W.S., Shi P.Y., Colonno  R.J., Lin  P.F., Inhibitors of HIV-1 Attachment. Part 2: An Initial Survey of Indole Substitution Patterns. Bioorg. Med. Chem. Lett., 19: 1977-1981 (2009).
[17] Toropova A.P., Toropov A.A., Benfenati E., Gini G., Leszczynska D., Leszczynski J., CORAL: Quantitative Structure–Activity Relationship Models for Estimating Toxicity of Organic Compounds in Rats, J. Comput. Chem, 32: 2727-2733 (2011).
[18] Schatzschneider U., “Antimicrobial activity of organometal compounds: Past, Present, and Future Prospects”, In “Advances in Bioorganometallic Chemistry”, Elsevier, Amsterdam, 173–192 (2019).
[19] Atashpaz-Gargari E., Lucas C., “Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition”, In IEEE Congress on Evolutionary Computation, Singapore, (2007).
[21] Bigdeli N., Afshar K., Gazafroudi A.S., Ramandi M.Y., A Comparative Study of Optimal Hybrid Methods for Wind Power Prediction in Wind farm of Alberta, Canada, Ren. Sustain. Energy. Rev., 27: 20-29 (2013).
[22] Aliniya Z., Mirroshandel S.A., A Novel Combinatorial Merge-Split Approach for Automatic Clustering using Imperialist Competitive Algorithm. Expert. Syst. Appl., 117: 243-266 (2019).
[23] Shokrollahpour E., Zandieh M., Dorri B., A Novel Imperialist Competitive Algorithm for Bi-Criteria Scheduling of the Assembly Flowshop Problem, Int. J. Prod. Res., 49: 3087–3103 (2011).
[24] Guha R., Serra J.R., Jurs P.C., Generation of QSAR Sets with A Self-Organizing Map, J. Mol. Graph. Model., 23: 1-14 (2004).
[25] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda  R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma  K., Zakrzewski  V.G., Voth  G.A., Salvador  P., Dannenberg  J., Dapprich  S., Daniels A.D., Farkas Ö., Foresman  J.B., Ortiz  J.V., Cioslowski  J., Fox D.J.,, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
[27] Todeschini R., Consonni V., “Handbook of Molecular Descriptors”, Wiley-VCH., (2000).
[28] Sayyadi kord Abadi R., Alizadehdakhel A., Tajadodi Paskiabei S., A DFT and QSAR Study of Several Sulfonamide Derivatives in Gas and Solvent, J. Korean Chem. Soc., 60: 225 (2016).
[29]  Sayyadi Kord Abadi  R., Alizadehdakhel  A., Dorani Shiraz  S., Ab Initio and QSAR Study of Several Etoposides as Anticancer Drugs: Solvent Effect, Russ. J. Physic. Chem. B, 11: 307-317 (2017).
[30] Toropova, A.P., Toropov A.A.,  CORAL Software: Prediction of Carcinogenicity of Drugs by Means of the Monte Carlo Method, Eur. J.  Pharm. Sci., 52: 21-25 (2014).
[33] Fermi  G.,   Perutz  M.F.,   Shaanan  B.,  Fourme  R., The Crystal Structure of Human Deoxyhaemoglobin at 1.74 Å Resolution, J. Mol. Biol., 175: 159-174 (1984).
[34] Stevanovi´c  N-L.,  Aleksic  I.,  Kljun  J.,  Bogojevic  S.S., Veselinovic  A., Nikodinovic-Runic  J., Turel  I.,  Djuran  M.I.,  Gliši´c B.Ð., Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential., Pharmaceuticals, 14: 24-44 (2021).
[35] Seif  N., Farhadi A., Badri R., Kiasat A.R., An Experimental and Theoretical Study on Bicyclo-3,4-Dihydropyrimidinone Derivative: Synthesis and DFT CalculationIran. J. Chem. Chem. Eng. (IJCCE), 39: 21-33 (2020).
[36] Kumar A., Chauhan S., Monte Carlo Method based QSAR Modelling of Natural Lipase Inhibitors using Hybrid Optimal Descriptors, SAR. QSAR. Environ. Res., 28: 179-197 (2017).
[37] Sharma R.K., Katiyar D., Recent Advances in the Development of Coumarin Derivatives as Antifungal Agents, In Recent Trends in Human and Animal Mycology, 235–263 (2019).
[39] Vallee B.L., Falchu K.H., The Biochemical Basis of Zinc Physiology, Physiol. Rev., 73: 79–118 (2020).
[ 42] Maret W., Jacob C., Vallee B.L., Ficher E., Inhibitory Sites in Enzymes: Zinc Removal Andreactivation by Thionein, Proc. Natl. Acad. Sci., 96, 1936 –1940 (1999).
[43] Cuajungco M.P, Lees G.J, Zinc Metabolism in the Brain: Relevance to Human Neurodegenerative Disorders, Neurobiol. Dis., 4: 137-69 (1997).
[44] Andrejevi´c T.P., War zajtis B., Gliši´c B.D.,  Vojnovic S., Mojicevic M., Stevanovi´c N.L., Nikodinovic-Runic  J.,  Rychlewska  U.,  Djuran M. I., Zinc(II) Complexes with Aromatic Nitrogen-Containing Heterocycles as Antifungal Agents: Synergistic Activity with Clinically used Drug Nystatin, J. Inorg. Biochem., 208: 111089 (2020).
[45] de Azevedo França  J.A.,  Granado  R.,  de Macedo Silva  S.T.,   Santos-Silva  G.D.,  Scapin S., Borba-Santos  L.P.,  Rozental  S., de Souza  W., Martins-Duarte  E.S.,  Barrias  E., Rodrigues J.C.F., Navarro M., Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes In Protozoan Parasites and Sporothrix spp, Antimicrob. Agents Chemother., 64: e01980-19 (2020).