Design of a Solar Thermochemical Plant for Hydrogen Production

Document Type : Research Article

Authors

1 Chemical Engineering Department, NED University of Engineering & Technology, Karachi, Sindh, PAKISTAN

2 Polymer and Petrochemical Engineering Department, NED University of Engineering & Technology, Karachi, Sindh, PAKISTAN

Abstract

A plant was developed that uses a sulfur-ammonia thermochemical water-splitting process for H2 production. Hydrogen is beneficial as a fuel in different industries and automobiles. Aspen Plus was used for the simulation of hydrogen plant modeling. This process consists of electrolytic oxidation of ammonium sulfite and the thermal breakdown of potassium pyro sulfate and SO3 in the oxygen production half cycle. The reactions are carried out by solar thermal energy. The inlet stream is water, and the product streams are H2 and O2 gas. This research focuses on scrutinizing the economic strength of hydrogen production by electrolysis. During the research, it is clear that this type of study has great potential to reduce carbon emissions. That there is concluded economic potential for the electrolytic system. The model is for the full-scale operation that will produce approximately 1.3 lac kg H2 / day. It is equal to 370MW. Design specifications were placed in strategic areas of this model to aid in its conversions. Model convergence is complex because of various material and energy recycle loops within the plant. The overall electricity needed to start the process is intramural from squandering heat. The thermal energy storage system will operate continuously without any shutdown. Three substitutes for hydrogen production from solar thermal energy have been inspected from both an efficiency and economic point of view. This observation shows that the possible alternative using solar energy with the help of thermochemical water splitting to manufacture H2 is the best one. The other methods consider the direct conversion of solar energy into electrical energy by Si cells and H2O analysis. The usage of solar energy to power a vapor cycle leads to the production of electrical energy.

Keywords

Main Subjects