Vapor-Liquid Equilibrium of Binary Systems Containing Cyano-based Ionic Liquids and CO2: SAFT-γ GC EoS Modeling

Document Type : Research Article


Department of Chemical Engineering, University of Larestan, Lar, I.R. IRAN


The unusual thermodynamic behavior of ionic liquid (IL)+CO2 mixtures has challenged their theoretical modeling. In this paper, a SAFT-γ equation-based group contribution method (SAFT-γ GC EoS) is used to predict the Vapor-Liquid Equilibrium (VLE) of these mixtures. The binary systems containing CO2 and 1-butyl-3-methyl-imidazolium-thiocyanate ([bmim][SCN]),1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]), 1-hexyl-3-methylimidazolium dicyanamide ([hmim][DCA]), 1-ethyl-3-methylimidazolium tricyanomethanide ([emim][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([bmim][TCM]) or 1-hexyl-3-methylimidazolium tetracyanoborate ([hmim][TCB]) are divided into the functional groups of CO2, cyano-based anion, CH2, CH3 and imidazolium-based cationic head. Some new SAFT-γ parameters are optimized at temperatures from 283.15 to 373.15 K and pressures up to about 20 MPa. The observation of an average error of 1.86% between experimental and estimated bubble pressures indicates the desirable performance of SAFT-γ GC EoS to predict the VLE of CO2+imidazolium-, cyano-based ionic liquid mixtures.


Main Subjects

[1] Kim J.E., Kim H.J., Lim J.S., Solubility of Co2 in Ionic Liquids Containing Cyanide Anions: [C2mim][SCN], [C2mim][N(CN)2], [C2mim][C(CN)3], Fluid Phase Equilibria, 367: 151-158 (2014).
[2] Kazmi S., Awan Z., Hashmi S., Simulation Study of Ionic Liquid Utilization for Desulfurization of Model Gasoline, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(4): 209-221 (2019).
[3] Pazuki G., Zare Khafri H., Naderifar A., Liquid-Liquid Extraction of Toluene from Heptane Using [Emim][Ntf2] Ionic Liquid: Experimental and Extensive Thermodynamics Study, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(3): 913-924 (2021).
[4] Philip F.A., Henni A., Enhancement of Post-Combustion CO2 Capture Capacity by Incorporation of Task-Specific Ionic Liquid into Zif-8, Microporous and Mesoporous Materials, 330: 111580 (2021).
[5] Kazmi B., Haider J., Ammar Taqvi S.A., Qyyum M.A., Ali S.I., Hussain Awan Z.U., Lim H., Naqvi M., Naqvi S.R., Thermodynamic and Economic Assessment of Cyano Functionalized Anion Based Ionic Liquid for Co2 Removal from Natural Gas Integrated with, Single Mixed Refrigerant Liquefaction Process for Clean Energy, Energy 239(Part E): 122425 (2021).
[6] Shen G., Held C., Lu X., Ji X., Modeling Thermodynamic Derivative Properties of Ionic Liquids with Epc-Saft, Fluid Phase Equilibria, 405: 73-82 (2015).
[7] Sun Y., Schemann A., Held C., Lu X., Shen G., Ji X., Modeling Thermodynamic Derivative Properties and Gas Solubility of Ionic Liquids with Epc-Saft, Industrial & Engineering Chemistry Research, 58(19): 8401-8417 (2019).
[9] Ashrafmansouri S.-S., Raeissi S., Modeling Gas Solubility in Ionic Liquids with the Saft-Γ Group Contribution Method, The Journal of Supercritical Fluids, 63: 81-91 (2012).
[10] Ashrafmansouri S.-S., Raeissi S., Extension of Saft-Γ to Model the Phase Behavior of CO2+Ionic Liquid Systems, Fluid Phase Equilibria, 538: 113026 (2021).
[11] Rostami A., Baghban A., Shirazian S., On the Evaluation of Density of Ionic Liquids: Towards a Comparative Study, Chemical Engineering Research and Design, 147: 648-663 (2019).
[12] Gholizadeh F., Sabzi F., Prediction of CO2 Sorption in Poly(Ionic Liquid)S Using ANN-GC and ANFIS-GC Models, International Journal of Greenhouse Gas Control, 63: 95-106 (2017).
[13] Kardani M.N., Baghban A., Sasanipour J., Mohammadi A.H., Habibzadeh S., Group Contribution Methods for Estimating CO2 Absorption Capacities of Imidazolium and Ammonium-Based Polyionic Liquids, Journal of Cleaner Production, 203: 601-618 (2018).
[14] Song Z., Shi H., Zhang X., Zhou T., Prediction of CO2 Solubility in Ionic Liquids Using Machine Learning Methods, Chemical Engineering Science, 223: 115752 (2020).
[15] Llovell F., Marcos R.M., MacDowell N., Vega L.F., Modeling the Absorption of Weak Electrolytes and Acid Gases with Ionic Liquids Using the Soft-Saft Approach, The Journal of Physical Chemistry B, 116(26): 7709-7718 (2012).
[16] Llovell F., Oliveira M.B., Coutinho J.A.P., Vega L.F., Solubility of Greenhouse and Acid Gases on the [C4mim][MeSO4] Ionic Liquid for Gas Separation and CO2 Conversion, Catalysis Today, 255: 87-96 (2015).
[17] Ferreira M.L., Llovell F., Vega L.F., Pereiro A.B., Araújo J.M.M., Systematic Study of the Influence of the Molecular Structure of Fluorinated Ionic Liquids on the Solubilization of Atmospheric Gases Using a Soft-Saft Based Approach, Journal of Molecular Liquids, 294: 111645 (2019).
[18] Alkhatib I.I.I., Ferreira M.L., Alba C.G., Bahamon D., Llovell F., Pereiro A.B., Araújo J.M.M., Abu-Zahra M.R.M., Vega L.F., Screening of Ionic Liquids and Deep Eutectic Solvents for Physical CO2 Absorption by Soft-Saft Using Key Performance Indicators, Journal of Chemical & Engineering Data, 65(12): 5844-5861 (2020).
[19] Ghotbi C., Safavi M., Tavakolmoghadam M., Modeling the Solubility of Acid Gases in Ionic Liquids, Gas Processing Journal, 2(2): 53-66 (2014).
[20] Al-Fnaish H., Lue L., Modelling the Solubility of H2S and CO2 in Ionic Liquids Using PC-SAFT Equation of State, Fluid Phase Equilibria, 450: 30-41 (2017).
[21] Ayad A., Negadi A., Mutelet F., Carbon Dioxide Solubilities in Tricyanomethanide-Based Ionic Liquids: Measurements and Pc-Saft Modeling, Fluid Phase Equilibria, 469: 48-55 (2018).
[22] Alcantara M.L., Ferreira P.I.S., Pisoni G.O., Silva A.K., Cardozo-Filho L., Lião L.M., Pires C.A.M., Mattedi S., High Pressure Vapor-Liquid Equilibria for Binary Protic Ionic Liquids+Methane or Carbon Dioxide, Separation and Purification Technology, 196: 32-40 (2018).
[23] Loreno M., Reis R.A., Mattedi S., Paredes M.L.L., Predicting the Solubility of Carbon Dioxide or Methane in Imidazolium-Based Ionic Liquids with Gc-Spc-Saft Equation of State, Fluid Phase Equilibria, 479: 85-98 (2019).
[24] Lymperiadis A., Adjiman C.S., Jackson G., Galindo A., A Generalisation of the Saft-Γ Group Contribution Method for Groups Comprising Multiple Spherical Segments, Fluid Phase Equilibria, 274(1): 85-104 (2008).
[25] Lymperiadis A., Adjiman C.S., Galindo A., Jackson G., A Group Contribution Method for Associating Chain Molecules Based on the Statistical Associating Fluid Theory (Saft-Γ), The Journal of Chemical Physics, 127(23): 234903 (2007).
[26] Storn R., Price K., Differential Evolution – a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11(4): 341-359 (1997).
[27] Kim J.E., Kang J.W., Lim J.S., Measurement of CO2 Solubility in Cyanide Anion Based Ionic Liquids; [C4mim][SCN], [C4mim][N(CN)2], [C4mim][C(CN)3], Korean Journal of Chemical Engineering, 32(8): 1678-1687 (2015).
[28] Carvalho P.J., Álvarez V.H., Marrucho I.M., Aznar M., Coutinho J.A.P., High Pressure Phase Behavior of Carbon Dioxide in 1-Butyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide and 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquids, The Journal of Supercritical Fluids, 50(2): 105-111 (2009).
[29] Zubeir L.F., Romanos G.E., Weggemans W.M.A., Iliev B., Schubert T.J.S., Kroon M.C., Solubility and Diffusivity of CO2 in the Ionic Liquid 1-Butyl-3-Methylimidazolium Tricyanomethanide Within a Large Pressure Range (0.01 Mpa to 10 Mpa), Journal of Chemical & Engineering Data, 60(6): 1544-1562 (2015).
[30] Mota-Martinez M.T., Althuluth M., Kroon M.C., Peters C.J., Solubility of Carbon Dioxide in the Low-Viscosity Ionic Liquid 1-Hexyl-3-Methylimidazolium Tetracyanoborate, Fluid Phase Equilibria, 332: 35-39 (2012).
[31] Aki S.N.V.K., Mellein B.R., Saurer E.M., Brennecke J.F., High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, The Journal of Physical Chemistry B, 108(52): 20355-20365 (2004).
[32] Cho H.-K., Kim J.E., Lim J.S., The Effect of Cyano Groups on the Solubility of Carbon Dioxide in Ionic Liquids Containing Cyano Groups in Anion, Korean Journal of Chemical Engineering, 34(5): 1475-1482 (2017).
[33] Zakrzewska M.E., Nunes da Ponte M., Volumetric and Phase Behaviour of Mixtures of Tetracyanoborate-Based Ionic Liquids with High Pressure Carbon Dioxide, The Journal of Supercritical Fluids, 113: 31-38 (2016).