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ABSTRACT: The kinetics of methane hydrate formation in the presence of tetra n-butylammonium 

chloride (TBAC) and sodium dodecyl sulfate (SDS) is investigated in this research. The hydrate 

formation reactions are carried out in the isothermal condition of 278.15 K in a 169 cm3 stirred batch 

reactor. The amount of gas uptake and the storage capacity of methane hydrate formation are calculated. 

Results indicate that utilization of TBAC with a concentration of (3 and 5) wt% and SDS  

with a concentration of 400 ppm increases the amount of gas consumption and the storage capacity 

of methane hydrate formation. Utilization of TBAC along with SDS decreases the amount of gas 

consumption and storage capacity, compared to aqueous the solution of SDS. Investigation of the impact 

of pressure on the gas hydrate formation indicates that by increasing the initial pressure of the cell 

from 6 MPa to 8 MPa, the amount of gas consumption and the storage capacity of methane hydrate 

formation increases, considerably.  
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INTRODUCTION 

Methane is the major component of natural gas and 

natural gas is one of the main and clean energy sources. 

Because of the significant growth in worldwide energy 

demand, natural gas has an important role in meeting this 

need. On the other hand, the consumption of natural gas  

 

 

 

is rapidly increasing. Thus, finding a safe and cost-

efficient method to store a high volume of natural gas 

seems to be very necessary. 

Gas Hydrates are non-stoichiometric crystalline 

compounds composed of a "guest" molecule of a certain  
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size clathrate by a hydrogen-bonded host water cage of 

hydrate crystal lattice [1]. Recently, many researchers have 

focused on the positive applications of gas hydrates due to 

the high storage capacity of these compounds [2-15]. 

Natural gas storage and transportation by hydrate technology 

are safer than other technologies such as LNG. However, 

the slow kinetics of the hydrate formation process and the need 

for high operating pressure and low operating temperature, 

increase the cost of this technology [1, 16, 17]. Therefore, 

researchers devoted more energy to promoting the kinetics 

[16, 18-35] and moderating the thermodynamics [36-50]  

of gas hydrate formation.  

Slehfekr and coworkers studied the thermodynamic 

conditions of propane and normal butane mixture. Their 

results showed that by increasing the concentration of 

propane in the mixture, the equilibrium pressure of hydrate 

formation decreases [51]. Tetra n-butylammonium salts 

are environmentally friendly compounds that moderate the 

gas hydrate formation conditions, noticeably. These 

compounds form a new structure of hydrates, called  

semi-clathrate hydrates. In this type of hydrate, the large 

cavities occupied by tetra n-butyl ammonium ions and  

the small cavities could be occupied by small gas 

molecules [47, 52, 53]. In 2007, Arjmandi and coworkers 

measured the semi-clathrate hydrate dissociation data  

of natural gas, methane, carbon dioxide, and nitrogen  

in presence of TBAB. They found that by increasing  

the concentration of TBAB the stability and promotion 

effect of hydrate formation increases [37]. Mohammadi 

and coworkers studied the effect of various concentrations  

of TBAC and TBAF on methane, carbon dioxide, and 

nitrogen phase diagram. They concluded that these 

additives, considerably, moderate the thermodynamics  

of hydrate formation [42, 47]. Makino et al. in 2010 widely 

investigated the thermodynamic stabilities of TBAC  

semi-clathrate hydrate formation in presence of hydrogen, 

nitrogen, methane, carbon dioxide, and ethane. Their 

studies showed that the presence of these gas along with 

TBAC, moderate the hydrate formation conditions 

compared to the simple TBAC semi-clathrate hydrate [54].  

The thermodynamics of semi-clathrate hydrates is widely 

studied in recent years but the kinetics of these compounds 

need more investigation. In 2018, Bavoh and coworkers 

investigated the effect of two amino acids on the kinetics 

and thermodynamics of methane hydrate formation. They 

showed that arginine and valine inhibit the methane 

thermodynamics hydrate formation and promote the 

kinetics of this process [55]. Chen and coworkers 

suggested the oleic acid potassium as a strong kinetic 

additive that considerably promotes the kinetics of 

methane hydrate formation. They showed that the addition 

of 500 ppm of this component presents a similar effect 

with SDS [56]. The effect of SDS on the kinetics  

of methane-THF hydrate formation investigated  

by Kumar et al., in 2019. They showed that the addition  

of SDS as a strong kinetic promoter in this mixture causes 

the co-existence of pure methane hydrate with structure SI 

and double methane-THF hydrate with structure SII [57].  

In 2018, Mohammadi et al. studied the kinetics of 

carbon dioxide hydrate formation in the presence and 

absence of TBAF and SDS [16]. Their results indicate that 

utilization of 0-5 wt% TBAF and 400 ppm SDS increases 

the storage capacity and the amount of gas consumed 

during the hydrate formation process and decrease  

the induction time of carbon dioxide hydrate formation.  

The Kinetics of hydrogen + TBAB semi-clathrate hydrate 

formation is investigated by Trueba et al., in 2012 [58]. 

They experimentally showed that using TBAB promotes 

the kinetics of hydrogen hydrate formation. They also 

investigated the effect of pressure on the kinetics of 

hydrate formation. They showed that kinetics is favored  

at higher pressures [58]. In another work, Mech and 

coworkers investigated the methane hydrate formation  

in presence of TBAB, THF, and SDS [59]. Their study 

showed that simultaneous utilization of TBAB and THF 

increases the amount of gas consumption and storage 

capacity of methane at low pressures [59]. Roosta et al. [60], 

investigated the effect of TBAB and THF on the rate  

of methane hydrate formation. They showed that 

utilization of low concentrations of TBAB increases  

the rate of methane hydrate formation [60]. 

An economic study of using additives in the process of 

hydrate formation should be noticed before the process 

design. TBAC is an environmentally friendly compound 

that is not toxic, volatile, or flammable. This salt is  

an expensive additive but the experimental investigations 

showed that utilization of low concentrations of this 

additive promotes the thermodynamic conditions of methane 

hydrate formation, significantly [41, 42, 61]. The use  

of low concentrations of TBAC reduces the costs of the 

hydrate formation process. On the other hand, SDS is one 

of the best-tested kinetic additives that strongly promotes  
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the kinetics of methane hydrate formation and therefore 

reduce the costs of this process [62-65]. 

In recent years, many researchers have focused on  

the kinetics of methane hydrate formation in presence of 

kinetic promoters (such as surfactants and nanoparticles). 

TBAC is one of the most promising thermodynamic 

additives for methane hydrate formation that by changing 

the structure of gas hydrate formation, moderates the phase 

equilibrium of methane hydrate formation, considerably. 

Investigating the kinetics of methane hydrate formation  

in presence of thermodynamic additives such as TBAC 

needs more attention. In this work, the effect of low 

concentrations of an environmentally friendly thermodynamic 

additive, TBAC with the concentration of (3 and 5) wt%, 

and an anionic surfactant, SDS with a concentration of 400 ppm 

being investigated on the amount of gas uptake and storage 

capacity of methane hydrate. We, also, study the effect of 

initial pressure on the kinetics of methane hydrate 

formation in the presence and absence of TBAC and SDS. 

 

EXPERIMENTAL SECTION 

Materials and apparatus 

Table 1 shows the names, purities, and suppliers of 

chemicals used in this research. The experimental 

apparatus used for the kinetic investigation of methane + 

TBAC semi-clathrate hydrate formation is depicted  

in Fig. 1. The main part of the setup is a high-pressure cell 

with an inner volume of 169 cm3 and maximum working 

pressure of 20 MPa. The contents of the cell are agitated 

using a rocking cell stirrer with a speed of 10 rpm.  

The temperature of the cell is controlled by a cooling 

medium circulatory system having a mixture of 50% 

ethylene glycol and water as a coolant. A 0.01 MPa 

scale pressure transducer and a 0.1 K scale 

thermocouple (PT100) were used to measure the 

pressures and temperatures. 

 

Procedure 

At first, the various aqueous solutions of TBAC and 

SDS were prepared. And then a certain amount of the 

prepared solution was introduced into the batch crystallizer. 

After adjusting the crystallizer temperature to the temperature 

of 278.15 K by the circulator, the gas was injected  

into the crystallizer to reach the desired pressures. Then, 

the rocking cell stirrer was turned on with the speed  

of 10 rpm to agitate the solution inside the crystallizer.  
 

Table 1: Purities and suppliers of materials used in this work. 

Purity Supplier Chemical 

98 wt% Daejung SDS 

99.995 mole% Varian Gas Methane 

95 mole% Merck TBAC 

 

 

 
 

Fig. 1: Schematic illustration of the experimental apparatus. 

 

The temperature and pressure of the crystallizer were recorded 

on a computer with an electronic measuring device.  

 

RESULTS AND DISCUSSION 

The kinetic promotion effect of TBAC and SDS  

on the storage capacity, amount of gas uptake, and apparent 

rate constant of methane hydrate formation is assessed  

in this work.  

 

Amount of gas uptake 

To evaluate the impact of pressure, SDS, and various 

concentrations of TBAC on the kinetics of methane 

hydrate formation, samples of (a) 3, and 5 wt% TBAC (b) 

400 ppm SDS and (c) a mixture of TBAC + SDS  

were prepared. The experimental temperature of methane 

hydrates has been fixed at 278.15 K with operating 

pressures of 6 and 8 MPa.  



Iran. J. Chem. Chem. Eng. Mohammadi A. et al. Vol. 41, No. 8, 2022 

 

2746                                                                                                                                                                Research Article 

Peng-Robinson equation [66] of state was employed  

to evaluate the amount of gas uptake in the process of gas 

hydrate formation [67].  

4

0 0 t t
CH

0 0 t t

P V P V
n

Z RT Z RT
                                                   (1) 

Figs. 2 and 3 depict the impact of TBAC with 

concentrations of 3 and 5 wt% on the quantity of methane 

uptake. As shown in these figures, utilization of low 

concentrations of TBAC increases the quantity of methane 

uptake at both initial pressures of 6 and 8 MPa. At initial 

pressure of 6 MPa, the amount of methane uptake per mole 

of water in presence of 0, 3, and 5 wt% TBAC are 40.2, 

49.4, and 47.8 mmol/mol, respectively. The solution of 

TBAC with the concentration of 3 wt% shows the best 

result of gas uptake in the gas hydrate formation process. 

investigation of the effect of various concentrations  

of TBAC on the quantity of methane uptake at the initial 

pressure of 8 MPa shows similar results. Utilization  

of 3 and 5 wt% TBAC by shifting the phase diagram  

of methane hydrate formation to the stabilized regions [42], 

increases the driving force of methane hydrate formation 

and therefore increases the amount of methane uptake. 

In fact, the presence of TBAC plays a dual role in the 

hydrate formation process. This compound by increasing 

the driving force of gas hydrate formation promotes  

the kinetics of methane hydrate formation and changing 

the structure of gas hydrates to semi-clathrates and 

occupying the large cages by TBA+ ions inhibit the kinetics 

of gas hydrate formation. As shown in Figs. 2 and 3, at low 

concentrations of TBAC, the positive effect of this 

compound dominates its negative effect.  

Figs. 4 and 5 show the quantity of methane uptake  

per mole of water in presence of SDS with a concentration 

of 400 ppm and TBAC with concentrations of 3 and 5 wt%. 

At initial pressure of 6 MPa, the amount of methane uptake 

during the hydrate formation process in presence of 400 ppm 

SDS and TBAC with concentrations of 0, 3, and 5 wt%, 

are 63.7, 41.3, and 31.3 mmol/mole of water, respectively. 

The experiments conducted at 400 ppm SDS in the absence  

of TBAC show higher moles of methane uptake per mole 

of water as compared with SDS (400 ppm) + TBAC (3 and 5 wt%) 

aqueous solutions. 

The presence of SDS, decreases the interfacial tension 

of water molecules and therefore increases the amount  

of gas uptake during the hydrate formation process.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The effect of TBAC on the amount of methane uptake 

during hydrate formation at an initial pressure of 6 MPa and 

temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: The effect of TBAC on the amount of methane uptake 

during hydrate formation at an initial pressure of 8 MPa and 

temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The effect of TBAC on the amount of methane uptake 

during hydrate formation in presence of SDS with a 

concentration of 400 ppm at an initial pressure of 6 MPa and 

temperature of 278.15 K. 
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As shown in Figs. 4 and 5, simultaneous utilization 

of SDS (400 ppm) and TBAC ((0.03 and 0.05) mass 

fraction) decreases the quantity of gas uptake, compared 

to the system of CO2 + SDS (400 ppm) + water. In other 

words, adding TBAC (with concentrations of (0.03 and 

0.05) mass fraction) to an aqueous solution of SDS 

(with a concentration of 400 ppm) results in a negative 

effect on the quantity of gas uptake during hydrate 

formation. A likely reason for this phenomenon is  

a s follows: The strong interaction between the ions of Na+ 

(released from SDS) and Cl- (in the lattice structure  

of semi-clathrate hydrates) results in a negative effect 

on the stability of the semi-clathrate lattice structure  

and consequently, the number of trapped gases  

will be decreased. The interaction between Na+ and Cl- 

ions (released from SDS and TBAC) reduces the stability  

of semi-clathrate lattice structure and consequently decreases 

the quantity of methane uptake. 

Figs. 6 and 7 depict the amount of gas consumed during 

the hydrate formation process in the presence and absence 

of 400 ppm SDS at initial pressures of 6 and 8 MPa.  

At initial pressure of 6 MPa, the amount of methane uptake 

per mole of water in the presence and absence of 400 ppm 

are 26.4 and 63.7 mmol/mol, respectively; and at an initial 

pressure of 8 MPa, the amount of methane uptake per mole 

of water in presence and absence of 400 ppm are 48.1 and 

118 mmol/mol, respectively. This means that using SDS 

with a concentration of 400 ppm at initial pressures  

of 6 and 8 MPa, respectively, increases the amount of gas 

uptake 141.3% and 145.8%. SDS is one of the best 

surfactants in the hydrate formation process that by 

decreasing the interfacial tension of water molecules, 

promotes the kinetics of this process, noticeably. 

The initial pressure of the cell is another effective 

parameter in the process of hydrate formation. The effect 

of this parameter on the amount of methane uptake  

is illustrated in Figs. 8-13. It has been observed that  

by increasing the initial pressure of the cell from 6 MPa  

to 8 MPa, the number of gas uptake increases, considerably, 

for all samples.  

As shown in Fig. 8, the amount of methane uptake  

in pure water at initial pressures of 6 and 8 MPa, 

respectively, are 40.2 and 53.8 mmol/mole. Increasing  

the cell initial pressure from 6 MPa to 8 MPa in presence 

of SDS with a concentration of 400 ppm increases  

the amount of gas uptake, 82.7%, as observed in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The effect of TBAC on the amount of methane uptake 

during hydrate formation in presence of SDS with a 

concentration of 400 ppm at an initial pressure of 8 MPa and 

temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: The effect of SDS on the amount of methane uptake 

during hydrate formation at an initial pressure of 6 MPa and 

temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The effect of SDS on the amount of methane uptake 

during hydrate formation at an initial pressure of 8 MPa and 

temperature of 278.15 K. 
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Fig. 8: The effect of initial pressure of the cell on the amount 

of methane uptake during hydrate formation for the system of 

methane + water at a temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The effect of the initial pressure of the cell on the amount 

of methane uptake during hydrate formation for the system  

of methane + water + SDS (400 ppm) at a temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: The effect of initial pressure of the cell on the amount of 

methane uptake during hydrate formation for the system of 

methane + water + TBAC (3 wt%) at a temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: The effect of the initial pressure of the cell on the amount 

of methane uptake during hydrate formation for the system  

of methane + water + TBAC (5 wt%) at a temperature of 278.15 K. 

 

Increasing the initial pressure of the cell increases  

the driving force of gas hydrate formation. The equilibrium 

pressure of methane hydrate formation at 278.15 K  

is about 4.3 MPa. this means that the driving force  

of methane hydrate formation at the feed pressures  

of 6 and 8 MPa are 1.7 and 3.7 MPa, respectively. The driving 

force of methane hydrate formation at 8 MPa is more than 

twice the driving force of methane hydrate formation  

at 6 MPa. The higher driving force of methane hydrate 

formation at 8 MPa, promotes the kinetics of the methane 

hydrate formation process.  

As can be found in Figs. 10 and 11, the positive effect 

of initial pressure on the kinetics of methane hydrate 

formation in presence of TBAC is less than in other samples. 

So, increasing the initial pressure of the cell from 6 MPa 

to 8 MPa in presence of 3 and 5 wt% TBAC, respectively, 

increases the amount of gas uptake, 24.4% and 8.9%, while 

this amount is 33.8% in pure water. In the presence  

of TBAC, some cages are occupied by TBA+ ions and 

therefore, the ability of generated driving force in 

promoting the kinetics of methane hydrate formation 

decreases. 

The effect of initial pressure on the kinetics of methane 

hydrate formation in the simultaneous presence of TBAC 

and SDS is illustrated in Figs. 12 and 13. As observed  

in these two figures, increasing the initial pressure of the cell, 

by increasing the driving force of the hydrate formation 

process, increases the amount of methane uptake. 

The following equation is employed to evaluate  

the storage capacity of methane hydrate [67].  
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Fig. 12: The effect of the initial pressure of the cell on the 

amount of methane uptake during hydrate formation for the 

system of methane + water + TBAC (3 wt%) + SDS (400 ppm) 

at a temperature of 278.15 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: The effect of the initial pressure of the cell on the 

amount of methane uptake during hydrate formation for 

the system of methane + water + TBAC (5 wt%) + SDS (400 ppm) 

at a temperature of 278.15 K. 
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The calculated amount of storage capacity of methane 

hydrate formation in the presence and absence of SDS  

and TBAC is given in Table 2 and plotted in Fig. 14.  

As presented in Fig. 14 and Table 2, using low 

concentrations of TBAC (3 and 5 wt%) increases the 

amount of storage capacity, compared to pure water, in 

both initial pressures of 6 and 8 MPa. In fact, TBAC by 

moderating the thermodynamic conditions of methane 

hydrate formation increases the driving force of methane 

hydrate formation and consequently increases the storage 

capacity of methane hydrate. As presented in this figure 

and Table, hydrate formed from an aqueous solution of 

SDS shows higher storage capacities. SDS by decreasing 

the interfacial tension of water molecules, noticeably, 

promoted the kinetics of methane hydrate formation.  

The presence of SDS, decreases the interfacial tension  

of water molecules and therefore increases the amount of gas 

uptake during the hydrate formation process. In the presence 

of TBAC, some cages are occupied by TBA+ ions and 

therefore, the ability of generated driving force in promoting 

the kinetics of methane hydrate formation decreases.  

The interaction between Na+ and Cl- ions (released  

from SDS and TBAC) reduces the stability of the semi-

clathrate lattice structure and consequently decreases  

the quantity of methane uptake. 

The apparent rate constant of hydrate formation (kapp) 

is another kinetic parameter in the hydrate formation 

process that shows the growth rate constant of  

methane hydrate at the induction time of hydrate 

formation. This parameter is calculated from the following  

equation [62]: 

4CH

app
g eq

dn / dt
k

f f



     (3) 

Fig. 15 depicts the amount of initial apparent rate 

constant of methane hydrate formation in the presence 

and absence of TBAC and SDS. The numerical data  

are given in Table 2. As shown in Fig. 15 and Table 2, 

The amount of initial apparent rate constant in presence 

of 400 ppm SDS, is noticeable, higher than other samples 

at both initial pressures of 6 and 8 MPa. The lower 

amount of apparent rate constant in presence of TBAC 

is due to the fact that TBA+ ions (released from TBAC) 

occupy the large cavities of formed semi-clathrate  

at the induction time of hydrate formation and only small 

cavities are left to occupy by methane molecules. 

Therefore, the apparent rate constant of methane hydrate 

formation in the systems containing TBAC is lower than 

in other samples.  

 

CONCLUSIONS 

Kinetics of methane hydrate formation in the presence 

and absence of an environmentally friendly thermodynamic 

additive, TBAC, and an effective kinetic promoter, SDS, 

is investigated in this paper, at initial cell pressures  

of 6 MPa and 8 MPa and the temperature of 278.15 K. 
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Table 2: Storage capacity and initial apparent rate constant of methane hydrate formation in presence and absence  

of TBAC and SDS at a temperature of 278.15 K 

additive P / MPa Storage capacitya (V/V) Kapp × 1011 

Pure water 6 48.87 9.00 

TBAC (3 wt%) 6 59.82 2.30 

TBAC (5 wt%) 6 57.82 1.58 

SDS (400 ppm) 6 77.46 37.94 

SDS (400 ppm) + TBAC (3 wt%) 6 50.20 0.88 

SDS (400 ppm) + TBAC (5 wt%) 6 38.42 0.43 

Pure water 8 56.35 11.10 

TBAC (3 wt%) 8 72.58 9.07 

TBAC (5 wt%) 8 61.80 9.25 

SDS (400 ppm) 8 148.77 63.14 

SDS (400 ppm) + TBAC (3 wt%) 8 74.49 4.99 

a The maximum uncertainty in the measured storage capacity is expected to be 4 v/v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Storage capacity of methane hydrate formation in the 

presence and absence of TBAC and SDS at a temperature of 

278.15 K. Blue pattern filled: P = 8 MPa, and green solid filled: 

P = 6 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Initial apparent rate constant of methane hydrate 

formation in the presence and absence of TBAC and SDS at 

a temperature of 278.15 K. Blue pattern filled: P = 8 MPa, and 

green solid filled: P = 6 MPa. 

 

Utilization of 3 and 5 wt% TBAC, at both initial 

pressure of 6 and 8 MPa, by increasing the driving force  

of methane hydrate formation, increases the amount  

of methane uptake, compared to pure water. An aqueous 

solution of SDS with a concentration of 400 ppm at 8 MPa 

has shown higher methane uptake, compared to other 

samples. Investigation of the effect of pressure on the amount 

of gas consumed per mole of water showed that increasing 

 the initial pressure of the cell from 6 MPa to 8 MPa,  

by increasing the driving force of methane hydrate 

formation, increases the amount of gas uptake per mole  

of water for all samples. 

The storage capacity of methane hydrate formation is evaluated 

in the presence and absence of TBAC and SDS. Low 

concentrations of TBAC by moderating the thermodynamic 

conditions of methane hydrate formation and SDS by 

decreasing the surface tension of water molecules, increase  

the storage capacity of methane hydrate formation. 

The initial apparent rate constant of methane hydrate 

formation is calculated. The presence of TBAC, due to  
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occupying the large cages via TBA+ decreases the initial 

apparent rate constant of methane hydrate formation. 
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