Propane Oxidative Dehydrogenation on BiP1-XVXO4 Supported Silica Catalysts

Document Type : Research Article


1 Laboratory of Catalysis and Corrosion of Materials, Chouaïb Doukkali University, Faculty of Sciences El Jadida, BP. 20, El Jadida, MOROCCO

2 Laboratory of Chemistry and Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, BP 11,201-Zitoune, Meknes, MOROCCO


The molecularly dispersed BiP1-xVxO4/SiO2 supported oxides, with x varying from 0 to 1, were prepared by impregnation of Bismuth, Phosphorus, and Vanadium on silica. Their structures have been characterized by different techniques: X-ray diffraction, Raman spectroscopy, Temperature-Programmed Reduction of catalysts in H2 (H2-TPR), and methanol oxidation reaction. This very sensitive technique provided us with relevant information on the nature of the active sites (acid-base and redox) on the surface of the catalysts. The results of the characterization show the structural evolution of the vanadium species of the isolated crystallites from V2O5 for x =0.3 and x =0.5, to BiVO4, with the disappearance of BiPO4, with the increase of the vanadium content from x=0.5 to x = 1. The oxidation of methanol showed the basic properties of the BiPO4/SiO2 catalyst, by the formation of carbon dioxide as the major product of the reaction. The substitution of phosphorus with vanadium promotes the formation of formaldehyde, confirming the presence of redox sites on these substituted catalysts. These catalysts were examined in the Oxidative dehydrogenation (ODH) of propane. For x ≥ 0.5, the dispersed BiVO4 exhibited significant activity in propane ODH than the BiPO4 and V2O5 crystallites, with good selectivity to propylene and acrolein, consistent with their high reducibility confirmed by H2-TPR, and the presence of redox sites shown by the oxidation of methanol. The catalyst with x = 0 was less selective for propylene due to the favorable combustion of propylene during its formation. Such an understanding of the intrinsic catalytic properties of the BiP1-xVxO4/SiO2 oxides and in particular, the BiPO4 and BiVO4 crystallites provides new information on the structural requirements of the propane ODH reaction, beneficial for the design of more efficient Bi-P-V-O based catalysts for propylene and acrolein production.


Main Subjects

[1] Kaddouri A., Mazzocchia C., Tempesti E., The Synthesis of Acrolein and Acrylic Acid by Direct Propane Oxidation with Ni-Mo-Te-P-O Catalysts, Appl. Catal. A Gen., 180:271–275 (1999).
[2] Chen L., Liang J., Lin H., Weng W., Wan H., Védrine J.C., MCM41 and Silica Supported Movte Mixed Oxide Catalysts for Direct Oxidation of Propane to Acrolein, Appl. Catal. A Gen., 293:49–55 (2005).
[3] Yahya G., Sagir A., Abdulrahman A. R.L., Catalyst Design and Tuning for Oxidative dehydrogenation of Propane - A review, Appl. Catal. A, Gen., 20:1–100 (2020).
[4] Zhang X., Wan H., Weng W., Reaction pathways for Selective Oxidation of Propane To Acrolein over
Ce-Ag-Mo-P-O Catalysts
, Appl. Catal. A Gen., 353: 24–31 (2009).
[5] Andrushkevich T. V., Popova G.Y., Chesalov Y.A., Ischenko E.V., Khramov M.I., Kaichev V. V., Propane Ammoxidation on Bi Promoted MoVTeNbOx Oxide Catalysts: Effect of Reaction Mixture Composition, Appl. Catal. A Gen., 506: 109–17 (2015).
[6] Fan X., Zhang H., Li J., Zhao Z., Xu C., Liu J., Duan A., Jiang G., Wei Y., Ni-Mo Nitride Catalysts: Synthesis and Application in the Ammoxidation of Propane, Chinese J. Catal., 35: 286–93 (2014).
[7] Wang Y., Ma F., Chen S., Chen F., Lu W.M., Performance of Mo-V-Te-P Catalysts Supported on the SiC for Propane Selective Oxidation to Acrolein, Chinese Chem. Lett., 22: 1321–1325 (2011).
[8] Ouchabi M., Agunaou M. M.B., Oxydeshydrogenation du Propane Sur Des Catalyseurs BiP1-xVxO4, Ann. Chim. Sci. des Mater., 26:497–503 (2001).
[9] Liu G., Zhao Z.J., Wu T., Zeng L., Gong J., On the Nature of Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation, ACS Catal., 6: 5207–5214 (2016).
[10] Miranda G.P., Ferreira Neto V.J.M., Young A.F., Silveira E.B., Pries de Oliveira P.G., Mendes F.M.T., Oxidative dehydrogenation of Propane: Developing Catalysts Containing VOX, V-P-O and V-Mg-O Species Supported on MCM-41 and Activated Carbon, Catal. Today, 348:148–56 (2020).
[11] Hu J., Lu Z., Yin H., Xue W., Wang A., Shen L., Liu S., Aldol Condensation of Acetic Acid with Formaldehyde to Acrylic Acid over SiO2-, SBA-15-, and HZSM-5-Supported V-P-O Catalysts, J. Ind. Eng. Chem., 40: 145–151 (2016).
[12] Solyntjes S., Neumann B., Stammler H.G., Ignat’ev N., Hoge B., Bismuth Perfluoroalkylphosphinates: New Catalysts for Application in Organic Syntheses, Chem. - A Eur. J., 23:1568–75 (2017).
[13] Zazhigalov V.A., Bogutskaya L.V, Bacherikova I.V., Kharlamov A.I., Stoch J., Mechanochemical Modification of V-P-Bi-O Catalysts, Theor. Exp. Chem., 31: 258–260 (1995).
[14] Xie Y., Luo R., Sun G., Chen S., Zhao Z.J., Mu R., Gong J., Facilitating the Reduction of V-O Bonds on VOx/ZrO2 Catalysts for Non-Oxidative Propane Dehydrogenation, Chem. Sci., 11: 3845–51 (2020).
[15] Einaga H., Maeda N., Yamamoto S., Teraoka Y., Catalytic Properties of Copper-Manganese Mixed Oxides Supported on SiO2 for Benzene Oxidation with Ozone, Catal. Today, 245: 22–7 (2015).
[16] Yang K., Zhang Y., Li Y., Huang P., Chen X., Dai W., Fu X., Insight Into the Function of Alkaline Earth Metal Oxides as Electron Promoters for Au/TiO2 Catalysts Used in CO Oxidation, Appl. Catal. B Environ., 183:206–15 (2015).
[17] Damma D., Boningari T., Ettireddy P.R., Reddy B.M., Smirniotis P.G., Direct Decomposition of NOx over TiO2 Supported Transition Metal Oxides at Low Temperatures, Ind. Eng. Chem. Res., 57:615–44 (2018).
[18] Wang L., Wan H., Jin S., Chen X., Li C., Liang C., Hydrodeoxygenation of Dibenzofuran over SiO2, Al2O3/SiO2 and ZrO2/SiO2 Supported Pt Catalysts, Catal. Sci. Technol., 5:465–74 (2014).
[19] Vessally E., Farajzadeh P., Najafi E., Possible Sensing Ability of Boron Nitride Nanosheet and its Al– and Si–Doped Derivatives for Methimazole Drug by Computational Study, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4) :1001–11 (2021).
[20] Tatibouet J.M., Methanol Oxidation as a Catalytic Surface Probe, Appl. Catal. A Gen., 148:213–52 (1997).
[21] AGUNAOU M., OUCHABI M., Synthesis and Characterization of Nano-Structured Mixed Oxides, Ann. Chim. Sci. des Matériaux, 25:17–20 (2000).
[22] Ding C., Han A., Ye M., Zhang Y., Yao L., Yang J., Hydrothermal Synthesis and Characterization of Novel Yellow Pigments Based on V5+ Doped BiPO4 with High Near-Infrared Reflectance, RSC Adv., 8:19690–700 (2018).
[23] Li X., Li F., Lu X., Zuo S., Li Z., Yao C., Ni C., Microwave Hydrothermal Synthesis of BiP1− xVxO4/Attapulgite Nanocomposite with Efficient Photocatalytic Performance for Deep Desulfurization, Powder Technol., 327:467–75 (2018).
[24] Van Lingen J.N.J., Gijzeman O.L.J., Weckhuysen B.M., Van Lenthe J.H., On the Umbrella Model for Supported Vanadium Oxide Catalysts, J. Catal., 239:34–41 (2006).
[26] Au C.T., Zhang W.D., Wan H.L., Preparation and Characterization of Rare Earth Orthovanadates for Propane Oxidative dehydrogenation, Catal. Letters, 37:241–6 (1996).
[27] Deo G., Hardcastle F.D., Richards M., Hirt A.M., Wachs I.E., Raman Spectroscopy of Vanadium Oxide Supported on Alumina, Novel Materials in Heterogeneous Catalysis, pp.317–28 (1990).
[28] Bosch H., Kip B.J., Van Ommen J.G., Gellings P.J., Factors Influencing the Temperature-Programmed Reduction Profiles of Vanadium Pentoxide, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 80:2479–88 (1984).
[29] Klisińska A., Samson K., Gressel I., Grzybowska B., Effect of Additives on Properties of V2O5/SiO2 and V2O5/MgO Catalysts. I. Oxidative dehydrogenation of Propane and Ethane, Appl. Catal. A Gen., 309:
10–6 (2006).
[30] Yavari Z., Noroozifar M., Mirghoreishi Roodbaneh M., Ajorlou B., SrFeO3-δ Assisting with Pd Nanoparticles on the Performance of Alcohols Catalytic Oxidation, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 21–37 (2017).
[33] Nair H., Gatt J.E., Miller J.T., Baertsch C.D., Mechanistic Insights into the Formation of Acetaldehyde And Diethyl Ether From Ethanol over supported VOx, MoOx, and WOx catalysts, J. Catal., 279:144–54 (2011).
[34] Wachs I.E., Routray K., "Catalysis Science of Bulk Mixed Oxides", American Chemical Society, (2012).
[36] Lindblad T., Rebenstorf B., Yan Z.G., Andersson S.L.T., Characterization of Vanadia Supported on Amorphous AlPO4 and its Properties for Oxidative Dehydrogenation of Propane, Appl. Catal. A, Gen., 112:187–208 (1994).
[37] Parmaliana A., Arena F., Sokolovskii V., Frusteri F., Giordano N., A Comparative Study of the Partial Oxidation of Methane to Formaldehyde on Bulk and Silica Supported MoO3 and V2O5 Catalysts, Catal. Today, 28:363–71 (1996).
[38] Grabowski R., Kinetics of Oxidative dehydrogenation of C2 -C3 Alkanes on Oxide Catalysts, Catal. Rev. Sci. Eng., 48:199–268 (2007).
[39] Chen K., Khodakov A., Yang J., Bell A.T., Iglesia E., Isotopic Tracer and Kinetic Studies of Oxidative dehydrogenation Pathways on Vanadium Oxide Catalysts, J. Catal., 186:325–33 (1999).
[40] Chen K., Xie S., Bell A.T., Iglesia E., Structure and Properties of Oxidative dehydrogenation Catalysts Based on MoO3/Al2O3, J. Catal., 198:232–42 (2001).
[42] Argyle M.D., Chen K., Bell A.T., Iglesia E., Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia, J. Catal., 208:139–49 (2002).
[43] Klose F., Wolff T., Lorenz H., Seidel-Morgenstern A., Suchorski Y., Piórkowska M., Weiss H., Active Species on γ-Alumina-Supported Vanadia Catalysts: Nature and Reducibility, J. Catal., 247:176–93 (2007).
[44] Murgia V., Sham E., Gottifredi J.C., Torres E.M.F., Oxidative dehydrogenation of Propane and N-Butane over Alumina Supported Vanadium Catalysts, Lat. Am. Appl. Res., 34:75–82 (2004).
[45] Wachs I.E., Jehng J.M., Deo G., Weckhuysen B.M., Guliants V.V., Benziger J.B., In Situ Raman Spectroscopy Studies of Bulk and Surface Metal Oxide Phases During Oxidation Reactions, Catal. Today, 32:47–55 (1996).
[46] Wachs I.E., Weckhuysen B.M., Structure and Reactivity of Surface Vanadium Oxide Species on Oxide Supports, Appl. Catal. A Gen., 157:67–90 (1997).
[47] Goutam Deo I.E.W., Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol, J. Catal., 146:323–34 (1994).
[49] Parmaliana A., Arena F., Frusteri F., Giordano N., Scurrell M.S., Sokolovskii V., Partial oxidation of Methane to Formaldehyde on Bulk and Silica Supported MoO3 and V2O5 Catalysts: Surface Features and Reaction Mechanism, Stud. Surf. Sci. Catal., 107: 23–28 (1997).
[50] Miceli D., Arena F., Parmaliana A., Scurrell M.S., Sokolovskii V., Effect of the Metal Oxide Loading on the Activity of Silica Supported MoO3 and V2O5 Catalysts in the Selective Partial Oxidation of Methane, Catal. Letters, 18:283–8 (1993).
[51] Stern D.L., Grasselli R.K., Reaction Network and Kinetics of Propane Oxydehydrogenation over Nickel Cobalt Molybdate, J. Catal., 167:560–9 (1997).
[52] Grasselli R.K., Burrington J.D., Brazdil J.F., Mechanistic Features of Selective Oxidation and Ammoxidation Catalysis, Faraday Discuss. Chem. Soc., 72:203–23 (1981).
[53] Burch R., Hayes M.J., C-H Bond Activation in Hydrocarbon Oxidation on Solid Catalysts, J. Mol. Catal., A. Chem., 100:13–33 (1995).
[54] Sokolovskii V., Arena F., Giordano N., Parmaliana A., Role of Acid-Base Properties of SiO2-Based Catalysts in the Selective Oxidation of Propane, J. Catal., 167:296–9 (1997).