Kinetics, Equilibrium and Thermodynamic Studies on Fe3+ Removal from Aqueous Solutions by Chemically Modified Brown Algae

Document Type : Research Article


1 Laboratoire de l’Eau, d’Études et d’Analyses Environnementales, Faculté des Sciences, Université Abdelmalek Essâadi, Tétouan, MOROCCO

2 Chemical Engineering Department, Faculty of Sciences, University of Malaga, 29071 Malaga, SPAIN


Sargassum Vulgare was used as an effective biosorbent for the removal of Fe3+ from aqueous solutions. Results for batch operation are presented for biosorption onto algal biomass, raw and modified with HNO3, HCl, NaCl, and CaCl2. NaCl was selected as the best modifier for the algae surface for the improvement of the sorption capacity. Optimum biosorption conditions were determined as a function of contact time, biomass dosage, initial metal concentration, and temperature.
The Langmuir isotherm yields high regression values for a maximum monolayer sorption capacity of the modified biomass of 30.52 mg/g at optimum conditions (pH = 2, dose = 5 g/L, t = 120 min, and T= 298 K). This represents an increase of more than 50 % concerning the raw algae. The kinetics of sorption followed the pseudo-first-order rate equations and is fast enough to prove the technique feasible. The thermodynamic parameters showed that the adsorption of Fe3+ using algal biomass was feasible, spontaneous, and exothermic. Modified algae could be regenerated once using 0.001M EDTA solution, and a recovery of 90% of Fe3+ was obtained. Fourier Transform InfraRed (FT-IR) spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize the surface of modified algae.


Main Subjects

[1] Fathollahi A., Coupe S.J., El-Sheikh A.H., Sañudo-Fontaneda L.A., The Biosorption of Mercury by Permeable Pavement Biofilms in Stormwater Attenuation, Sci. Total Environ., 741: 140411 (2020).
[2] Amirnia S., Biosorption Processes for Removal of Toxic Metals from Wastewaters, Electron. Thesis Diss. Repos. (2015).
[3] Verma A., Kumar S., Kumar S., Biosorption of Lead Ions from the Aqueous Solution by Sargassum Filipendula: Equilibrium and Kinetic Studies, J. Environ. Chem. Eng., 4: 4587 (2016).
[4] Anastopoulos I., Kyzas G.Z., Progress in Batch Biosorption of Heavy Metals onto Algae, J. Mol. Liq., 209: 77 (2015).
[5] Davis T.A., Volesky B., Mucci A., A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae, Water Res., 37: 4311 (2003).
[6] Villen-Guzman M., Gutierrez-Pinilla D., Gomez-Lahoz C., Vereda-Alonso C., Rodriguez-Maroto J.M., Arhoun B., Optimization of Ni (II) Biosorption from Aqueous Solution on Modified Lemon Peel, Environ. Res., 179: 108849 (2019).
[9] Abolhasani S., Ahmadpour A., Rohani Bastami T., Yaqubzadeh A., Facile Synthesis of Mesoporous Carbon Aerogel for the Removal of Ibuprofen from Aqueous Solution by Central Composite Experimental Design (CCD), J. Mol. Liq., 281: 261 (2019).
[10] Devani M.A., Oubagaranadin J.U.K., Munshi B., Lal B.B., Mandal S., BP-ANN Approach for Modeling Cd(II) Bio-Sorption from Aqueous Solutions Using Cajanus Cajan Husk, Iran. J. Chem. Chem. Eng. (IJCCE), 38: 111-115 (2019).
[11] Din M.I., Naseem K., Mirza M. L., Batool M., Evaluation of Saccharum Bengalense as a Non-Conventional Biomaterial for Biosorption of Mn (II) Ions from Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 179-186 (2018).
[12] Fomina M., Gadd G.M., Biosorption: Current Perspectives on Concept, Definition and Application, Bioresour. Technol., 160: 3 (2014).
[13] Beni A.A., Esmaeili A., Biosorption, an Efficient Method for Removing Heavy Metals from Industrial Effluents: A Review, Environ. Technol. Innov. 17: 100503 (2020).
[14] Rocha de Freitas G., Adeodato Vieira M.G., Carlos da Silva M. G., Characterization and Biosorption of Silver by Biomass Waste from the Alginate Industry, J. Clean. Prod., 271: 122588 (2020).
[15] Zeraatkar A.K., Ahmadzadeh H., Talebi A.F., Moheimani N.R., McHenry M.P., Potential Use of Algae for Heavy Metal Bioremediation, A Critical Review, J. Environ. Manage., 181: 817 (2016).
[16] Kousha M., Daneshvar E., Sohrabi M. S., Jokar M., Bhatnagar A., Adsorption of Acid Orange II Dye  by Raw and Chemically Modified Brown Macroalga Stoechospermum Marginatum, Chem. Eng. J., 192: 67 (2012).
[17] Montazer-Rahmati M.M., Rabbani P., Abdolali A., Keshtkar A.R., Kinetics and Equilibrium Studies on Biosorption of Cadmium, Lead, and Nickel Ions from Aqueous Solutions by Intact and Chemically Modified Brown Algae, J. Hazard. Mater., 185: 401 (2011).
[18] Ismail W.M.Z.W., Ng Y.-S., Mukherjee S., Kundu A., Mukhopadhyay S., Gupta B.S., Hashim M.A., Yusoff I., Application of Taguchi Method for the Optimization of Fe2+ Removal from Contaminated Synthetic Groundwater Using a Rotating Packed Bed Contactor, Water Environ. J., 34: 57 (2020).
[20] Mahmoud M.A., Kinetics and Thermodynamics of Aluminum Oxide Nanopowder as Adsorbent for Fe (III) from Aqueous Solution, Beni-Suef Univ. J. Basic Appl. Sci., 4: 142 (2015).
[21] Sarin P., Snoeyink V.L., Bebee J., Jim K.K., Beckett M.A., Kriven W.M., Clement J.A., Iron Release from Corroded Iron Pipes in Drinking Water Distribution Systems: Effect of Dissolved Oxygen, Water Res., 38: 1259 (2004).
[22] Víctor-Ortega M.D., Ochando-Pulido J.M., Martínez-Ferez A., Iron Removal and Reuse from Fenton-like Pretreated Olive Mill Wastewater with Novel Strong-Acid Cation Exchange Resin Fixed-Bed Column, J. Ind. Eng. Chem., 36: 298 (2016).
[24] García-Mendieta A., Olguín M.T., Solache-Ríos M., Biosorption Properties of Green Tomato Husk (Physalis Philadelphica Lam) for Iron, Manganese and Iron–Manganese from Aqueous Systems, Desalination, 284: 167 (2012).
[25] Nieto L.M., Alami S.B.D., Hodaifa G., Faur C., Rodríguez S., Giménez J.A., Ochando J., Adsorption of Iron on Crude Olive Stones, Ind. Crops Prod., 32: 467 (2010).
[26] Lugo-Lugo V., Barrera-Díaz C., Ureña-Núñez F., Bilyeu B., Linares-Hernández I., Biosorption of Cr(III) and Fe(III) in Single and Binary Systems onto Pretreated Orange Peel, J. Environ. Manage., 112: 120 (2012).
[27] C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin, Chem. Eng. J. 149: 319 (2009).
[28] Selatnia A., Boukazoula A., Kechid N., Bakhti M.Z., Chergui A., Biosorption of Fe3+ from Aqueous Solution by a Bacterial Dead Streptomyces Rimosus Biomass, Process Biochem., 39: 1643 (2004).
[29] Bouzit L., Jbari N., Yousfi F.E., Alaoui N.S., Chaik A., Stitou M., Adsorption of Fe3+ by a Living Microalgae Biomass of Scenedesmus Obliquus, Mediterr. J. Chem., 7: 2 (2018).
[31] Mathew M.M., Mancy T.B., Stanley S.A., Removal of Chromium (VI) and Iron (III) from Aqueous Solution Using Agricultural Byproducts, J. Chem. Pharm. Res., 5: (2013).
[32] Varia J., Zegeye A., Roy S., Yahaya S., Bull S., Shewanella Putrefaciens for the Remediation of Au3+, Co2+ and Fe3+ Metal Ions from Aqueous Systems, Biochem. Eng. J., 85: 101 (2014).
[33] Benaisa S., Arhoun B., El Mail R., Rodriguez-Maroto J.M., Potential of Brown Algae Biomass as New Biosorbent of Iron : Kinetic, Equilibrium and Thermodynamic Study, J. Mater. Environ. Sci., 9: 2131 (2018).
[34] Benaisa S., Arhoun B., Villen-Guzman M., El Mail R., Rodriguez-Maroto J.M., Immobilization of Brown Seaweeds Sargassum Vulgare for Fe3+ Removal in Batch and Fixed-Bed Column, Water. Air. Soil Pollut., 230: 19 (2019).
[35] Akpomie K.G., Eluke L.O., Ajiwe V.I.E., Alisa C.O., Attenuation Kinetics and Desorption Performance of Artocarpus Altilis Seed Husk for Co (II), Pb (II) and Zn (II) Ions, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 171-186 (2018).
[36] Ho Y.S., Huang C.T., Huang H.W., Equilibrium Sorption Isotherm for Metal Ions on Tree Fern, Process Biochem., 37: 1421 (2002).
[37] Foo K.Y., Hameed B.H., Insights into the Modeling of Adsorption Isotherm Systems, Chem. Eng. J., 156: 2 (2010).
[38] Akbari M., Hallajisani A., Keshtkar A.R., Shahbeig H., Ghorbanian S.A., Equilibrium and Kinetic Study and Modeling of Cu(II) and Co(II) Synergistic Biosorption from Cu(II)-Co(II) Single and Binary Mixtures on Brown Algae C. Indica, J. Environ. Chem. Eng., 3: 140 (2015).
[39] Daneshvar E., Vazirzadeh A., Niazi A., Sillanpää M., Bhatnagar A., A Comparative Study of Methylene Blue Biosorption Using Different Modified Brown, Red and Green Macroalgae – Effect of Pretreatment, Chem. Eng. J., 307: 435 (2017).
[40] Yazıcı H., Kılıç M., Solak M., Biosorption of Copper(II) by Marrubium Globosum Subsp. Globosum Leaves Powder: Effect of Chemical Pretreatment, J. Hazard. Mater., 151: 669 (2008).
[41] Pahlavanzadeh H., Keshtkar A. R., Safdari J., Abadi Z., Biosorption of Nickel(II) from Aqueous Solution by Brown Algae: Equilibrium, Dynamic and Thermodynamic Studies, J. Hazard. Mater., 175: 304 (2010).
[42] Long Y., Lei D., Ni J., Ren Z., Chen C., Xu H., Packed Bed Column Studies on Lead(II) Removal from Industrial Wastewater by Modified Agaricus Bisporus, Bioresour. Technol., 152: 457 (2014).
[44] Bhatnagar A., Vilar V.J.P., Ferreira C., Botelho C.M.S., Boaventura R.A.R., Optimization of Nickel Biosorption by Chemically Modified Brown Macroalgae (Pelvetia Canaliculata), Chem. Eng. J., 193-194: 256 (2012).
[45] Zou X., Pan J., Ou H., Wang X., Guan W., Li C.,
Yan Y., Duan Y., Adsorptive Removal of Cr(III) and Fe(III) from Aqueous Solution by Chitosan/Attapulgite Composites: Equilibrium, Thermodynamics and Kinetics, Chem. Eng. J., 167: 112 (2011).