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ABSTRACT: In this work, the densities of pure and binary mixtures of 1-pentanol or 1-decanol with 

1,2-ethanediol or 1,2-propanediol or 1,3-butanediol or 2,3-butanediol were measured at atmospheric 

pressure and temperatures between 288.15K and 313.15K. For the considered system, two types  

of models were applied: black box and phenomenological. The black box model is represented  

by Artificial Neural Networks (ANNs) optimized with an improved version of Bacterial Foraging 

Optimization (iBFO). The phenomenological models are represented by Spencer-Danner and Li 

equations. In addition, in order to better fit the Spencer-Danner and Li equations to the obtained 

experimental data, the free parameters of these models were included in an iBFO algorithm. The average 

absolute error of the best ANN obtained was 2.82%, while the new forms of the Spencer-Danner and 

Li equations had an improvement from 26.31% and 26.51% respectively to 3.51% and 4.01% 

respectively. These results indicate the flexibility and efficiency of iBFO, which can provide good 

solutions for various cases.  
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INTRODUCTION 

Density is an important physical property, its 

measurement being essential in the design of new 

processes at industrial scale. In addition, the experimental  

 

 

 

 

 

data of density of binary mixtures are quintessential for 

understanding the liquid theory, determination of fundamental 

properties (such as the coefficient of isothermal  
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compressibility and the coefficient of isobaric thermal 

expansion), and development and test of equations of state 

(especially in mass and moment balances) [1-3]. Because 

hydrogen bonds play a vital role in most chemical, 

physical, and biological processes, hydrogen-bonded 

systems are very common. It is well known that alcohols 

are highly associated with hydrogen bonds; thus, their 

structure and properties are determined mainly by quasi-

chemical bonds between the molecules, which result in the 

formation of multimers of different sizsizesd structure. 

Especially interesting are diols, both from the practical and 

theoretical point of view [4]. Alkanols and alkanediols are 

important compounds that used in various applications. 

Their physiochemical properties are influenced by the 

hydroxyl group and therefore, they can be used for 

evaluating the hydrophobic interactions determined 

through theoretical models [5, 6]. Consequently, this work 

focuses on alkanols and alkanediols and their mixtures.  

In this context, reliable values for the properties of 

these material are necessary, especially when designing 

and implementing small or large-scale industrial 

processes. Many works focused on this aspect, entire 

datasets being collected and correlated. However, as the 

technology advances, the gap between demand and 

availability of data seems to remain constant. Therefore, in 

a stride to reduce the necessity of experimental measured 

values, strategies and method for predicting material 

properties were developed [7]. A number of investigators 

have developed equations for predicting the density of 

mixtures [8-12]. Also, generalized methods for predicting 

the saturated liquid density of pure compounds determined 

on a large set of critically evaluated experimental density 

data were proposed. Compared to other equations, the 

Spencer-Danner version of the Rackett equation with one 

adjustable constant, ZRA, determined from the 

experimental data and Li equation are shown to be slightly 

more accurate. These equations also compare favorably to 

the other equations in terms of availability of input 

parameters, range of application, and ease of use [7, 9].  

The majority of works so far focus on the system’s 

phenomenology, analytical correlation and/or statistical 

analysis. In the latest years, artificial neural networks 

(ANN) provide a range of powerful new techniques for 

solving problems in sensor data analysis, fault detection, 

process identification, and control and have been used in a 

diverse range of chemical engineering applications [13].  

Artificial intelligence-based techniques were also used  

for determining/predicting properties of mixtures such as 

density of two-phase mixtures [14,15] of binary mixture  

of ionic liquids+ water [16, 17], flow regime in gas-liquid 

two-phase systems [18, 19], phase equilibrium of mixture 

[20-23] viscosity and thermal conductivity predictions of 

binary and ternary mixtures [24,25], polymer exchange 

membrane fuel cell performance [26-28], indicators of 

density functional theory metal hydride models[29], molar 

density and specific heat of water [30] and the liquid vapor 

pressure[31].  

The main techniques used are represented by ANNs 

(which are mathematical representation of the working of 

the mammalian brain) and EAs (algorithms that apply the 

principle of evolution to determine a near optimum 

solution). The main reasons for the ANN popularity are 

their effectiveness, easiness of use, capability of modelling 

non-linear input-output relations and flexibility (as they 

can be applied to almost any type of process). Similarly, 

EAs are well-established techniques that can be efficiently 

applied where the classical optimization techniques fail or 

are too computationally expensive (require too much 

resources). The EAs are included into a larger class of 

algorithms called metaheuristic optimizers and in the latest 

years, a multitude of newer and better variants were 

proposed. Therefore, in this work, after the densities for the 

pure as well as binary mixtures of 1-pentanol or 1-decanol 

with 1,2-ethanediol or 1,2-propanediol or 1,3-butanediol or 

2,3-butanediol were measured over the whole composition 

range at (288.15, 293.15, 298.15, 303.15, 308.15 and 

313.15) K and at atmospheric pressure, an improved version 

of Bacterial Foraging Optimizer algorithm (which will be 

further called iBFO) is used to: i) determine the optimal 

values for the Spencer-Danner and Li equations for the 

considered system and ii) determine an alternative model for 

the system in the form of an ANN. Although ANNs are easy 

to apply and use, they are difficult to set up (determine  

the optimal architecture) and train (determine the optimal 

values for the internal parameters) and, in order to simplify 

this process, iBFO will perform a simultaneous parametric 

and structural optimization.  

 

EXPERIMENTAL SECTION 

Materials 

All the chemicals were applied without additional 

purification and they were analytical grade. The chemical name, 
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Table 1: Specifications of the Used Chemicals. 

Compound Source CAS NO 
Molar mass 

g/mol (Supplier) 
Purity (Supplier) 

Water content a 

(supplier) 

Water content 

(K.F) b 

1-pentanol Sigma-Aldrich 71-41-0 88.15 ≥99.8% ≤0.002 0.00016 

1-decanol Sigma-Aldrich 112-30-1 158.28 ≥99.5% ≤0.002 0.00034 

1,2 ethanediol Merck 107-21-1 62.07 ≥99.5% ≤0.001 0.00025 

1,2-propanediol Merck 57-55-6 76.09 ≥99.5% ≤0.001 0.00027 

1,3-butanediol Merck 107-88-0 90.12 ≥99.2% ≤0.001 0.00018 

2,3-butanediol Merck 513-85-9 90.12 ≥99.2% ≤0.002 0.00027 

a Purity stated by the supplier 
b Determined by a microprocessor based automatic Karl–Fischer Titrated. 

 

CAS number (CAS), supplier, purity, and water content 

are shown in Table 1. Their water content mass fraction 

declared by the supplier were ≤ 2×10-3. Also, to verify the 

accuracy of the analysis, Karl Fischer method (titrator 

model 751 GPD Titrino-Metrohm, Herisau, Switzerland) 

was used to determine the amount of water in pure 

alcohols. A good agreement between the supplier and  

Karl Fischer data was found. 

Also, the purity of each pure liquids was checked 

indirectly by measuring the density and comparing it with 

the available literature values at all studied temperatures 

[32-51] (Table 1). Given the data from Table 2, the average 

Absolute Deviation Percent (ADD %) between 

experimental and literature values are between 0.000% for 

1-decanol at T = 298.15 K [37] to maximum 0.37% for 1,2-

ED at T = 303.15 and K [39] and the mean values of 

AAD% for all density values are equal to 0.17. Regarding 

the mean values of AAD%, a satisfactory agreement is 

found between the measured values in this work and the 

data reported in literature. Due to this good agreement, no 

further purification of all the materials used in this study 

were performed.  

 

Experimental procedures 

The preparation of the binary solutions was performed 

by adding the suitable mass of alkanol and alkanediol  

to 10g in 15 mL graded laboratory tubes, utilizing an 

analytical balance (A&D., Japan, model GF300) with  

an uncertainty of ± 10−4 g. Before measuring the density, 

the content of the test tubes was rigorously vortexed  

for 10 min to homogenize the solution; the tube was provided 

with an external jacket and put in a thermostatic bath 

(Member., Germany, model INE400) to keep the 

temperature constant within ±0.1 K. To ensure complete 

miscibility, retention was allowed at a desired temperature 

for some hours. The Anton Paar oscillation U-tube 

densitometer (model DMA 500, Austria), calibrated with 

double- distilled water and air was used to measure the 

densities of pure liquids and their mixtures at different 

temperatures. The density values have a standard 

uncertainty of ± 10−4 g·cm−3. All of these measurements 

were performed twice and the mean values were reported. 

Every effort was made to perform the measurements in the 

same day the solutions were prepared. 

 

Modelling methodology  

Spencer-Danner and Li equations 

A number of investigators have developed equations 

for predicting the bubble-point density of mixtures.  

Rackett [52] determined that saturated liquid volumes 

can be calculated by 

Vs = V𝑐Zc
(1−

𝑇
𝑇𝑐
)
2
7

                                                                      (1) 

where Vs = saturated liquid volume, 𝑉𝑐 = critical 

volume, 𝑍𝑐 =  critical compressibility factor, 𝑇𝑐 = critical 

temperature. Equation (1) is often written in the equivalent 

form 

Vs =
𝑅Tc
Pc
Zc

[1+(1−
𝑇
𝑇𝑐
)

2
7
]

                                                           (2) 

While equation (1) is remarkably accurate for many 

substances, it underpredicts 𝑉𝑠 when 𝑍𝐶 < 0.22. 

Yamada and Gunn [53] indicated that Zc in Eq. (1)  

can be correlated with the acentric factor (ω): 

Vs = V𝑐(0.29056 − 0.08775𝜔)
(1−

𝑇
𝑇𝑐
)
2
7
                            (3) 
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Table 2: Densities 𝝆, of the pure components studied in this work at various temperatures T and pressure of 0.1 MPaa. 

Material T/K 
10-3 /g.cm-3 

Exp. Lit. AAD%b 

1-pentanol 

288.15 0.8200 - - 

293.15 0.8162 0.8147[32] 0.18 

298.15 0.8123 

0.8111 [33] 0.15 

0.81094[34] 0.17 

0.81112[35] 0.15 

303.15 0.8085 0.8073[32] 0.15 

308.15 0.8048 

0.8037 [33] 0.14 

0.80352[34] 0.16 

0.80345[36] 0.17 

313.15 0.8012 0.7998[32] 0.18 

1-decanol 

288.15 0.8333 - - 

293.15 0.8298 - - 

298.15 
0.8264 0.826388[37] 0.00 

0.8229 0.822970[37] 0.01 

303.15 0.8195 0.819534[37] 0.03 

308.15 
0.8160 - - 

0.8333 - - 

313.15 0.8298 - - 

1,2-Ethanediol 

298.15 1.1062 

1.1097 [38] 0.32 

1.1098 [39] 0.33 

1.1102 [40] 0.36 

1.1097 [41] 0.32 

1.1098 [42] 0.33 

1.1095 [43] 0.30 

303.15 1.1027 

1.10294 [44] 0.02 

1.1068 [39] 0.37 

1.1067 [40] 0.36 

1.1062 [41] 0.32 

1.1064 [42] 0.34 

1.1054 [43] 0.24 

308.15 1.0992 
1.1032 [39] 0.36 

1.1029 [42] 0.33 

313.15 1.0957 

1.0998 [39] 0.37 

1.09923 [42] 0.32 

1.09907 [41] 0.31 
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Table 2: Densities 𝝆, of the pure components studied in this work at various temperatures T and pressure of 0.1 MPaa. (Continuation) 

Material T/K 

10-3 /g.cm-3 

Exp. Lit. AAD%b 

1,2-Propanediol 

298.15 1.0332 

1.03286 [39] 0.03 

1.03286 [41] 0.03 

1.03277 [45] 0.04 

1.032588 [46] 0.06 

1.03283 [47] 0.04 

303.15 1.0294 

1.02915 [39] 0.02 

1.0291 [41] 0.03 

1.028881 [46] 0.05 

1.02902 [47] 0.04 

308.15 1.0257 

1.02557 [39] 0.01 

1.0254 [45] 0.03 

1.025088[48] 0.07 

313.15 1.0219 

1.02144 [40] 0.05 

1.02148 [41] 0.04 

1.021300[48] 0.06 

1,3-Butanediol 

298.15 1.0033 

1.00003 [45] 0.33 

1.0000 [47] 0.33 

303.15 1.0001 - - 

308.15 0.9968 

0.99422 [45] 0.26 

0.99420 [49] 0.26 

313.15 0.9939 - - 

2,3-Butanediol 

288.15 1.0073 1.0055[50] 0.18 

293.15 1.0034 1.0033[51] 0.01 

298.15 0.9996 

0.9984[50] 0.12 

0.99857[45] 0.10 

303.15 0.9956 - - 

308.15 0.9916 

0.9908[50] 0.08 

0.99211[45] 0.05 

313.15 0.9877 - - 

aStandard uncertainties are (𝑥𝑖) = 0.0001, u (𝜌) = 0.0001 g . 𝑐𝑚−3 , u (𝑛𝐷) = 0.0001, u (η) =0.002 and u (𝑇) = 0.05 K 

b(𝐴𝐷𝐷%) =
100

𝑁
∑ |

𝐴𝑖
𝑒𝑥𝑝

−𝐴𝑖
𝑐𝑎𝑙

𝐴𝑖
𝑒𝑥𝑝 |𝑁

𝑖=1      , where N denotes the number of experimental data points. 
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In order to extend equations to predict the density of 

mixtures such as Eq. (3) to mixtures, mixing rules are 

required. Li [7, 54] and Spencer and Danner [7, 9] 

indicated that Eq.4, which is an extension of the Rackett 

equation, will give an accuracy equivalent to any available 

methods.  

Vm = R(∑
xiTci
Pci

i

) Z
RAm

[1+(1−Tr)
0/2857]

                                 (4) 

ZRAm =∑xi ZRAi                                                                 (5) 

With the relation of Yamada and Gunn [49] 

ZRAi = 0/29056 − 0/08775ωi                                        (6) 

Where 𝑇𝑟 =
𝑇

𝑇𝑐𝑚
. Spencer and Danner [7, 9] recommend 

the mixing rules of Chueh and Prausnitz [7,55]. 

Tcm =∑∑∅i
ji

∅jTcij                                                         (7) 

∅i =
xiVci
∑ xjVcjj

                                                                          (8) 

1 − kij =
8(VCiVcj)

1 2⁄

(Vci
1 3⁄ + Vcj

1 3⁄ )
3                                                   (9) 

Tcij = (1− kij)(TciTcj)
1 2⁄
                                                (10) 

Li’s method sets 𝐾𝑖𝑗 = 0 for Eq. (10) [7, 9]. 

 

Artificial Neural Networks 

The ANNs are inspired from the biological brain. They 

are formed from artificial neurons organized in layers. The 

manner in which the layers are connected indicate the type 

of the ANN. The most known and used type of ANN  

is represented by the Feed Forward Multilayer Perceptron 

Neural Network (MLP), where the neurons in each layer 

are fully connected with all the neurons in the next layer 

and the signal is transmitted in a single direction, from 

inputs to outputs. A schema of a general MLP with one 

hidden layer is presented in Fig. 1, where In represents the 

input, wi,j the weight from neuron i to neuron j, Nk 

represents the k neuron from the hidden layer and Nouti  

the ith neuron from the output layer, bi and afi the bias and 

the activation function on the ith neuron. In the majority of 

frameworks implementing ANNs, the activation function 

is specified by layer, which means that all the neurons  

in the same layer have the same type of activation function. 

However, in this work, the activation function is 

considered as being specific to each neuron 

In order for an ANN to be applied to a specific 

problem, its optimal structure must be determined and a 

training phase performed. The number of inputs and 

outputs of an ANN depends on the characteristics of the 

problem being solved. On the other hand, the number of 

hidden layers and of neurons in each hidden layer is 

dependent on the complexity of the relations between 

inputs and inputs and on the available number of data 

describing the system being modeled. The higher the 

number of hidden layers and neurons the higher the number 

of weights that must be determined in the training phase.  

In the training phase, the optimal values of the weights 

and biases are determined so that the lowest error between 

the available data and the predicted values is obtained. 

There are different types of training (supervised, 

unsupervised and semi-supervised) and from the 

supervised category, the BackPropagation algorithm is the 

most known. It is based on a generalization of the Widrow-

Hoff learning rule [56] and it suffers from all the problems 

characteristic to the steepest descent approaches. In order 

to eliminate this problem, in this work, the topology 

determination and training is simultaneously performed 

using a bio-inspired metaheuristic represented by iBFO.  

 

Optimization procedure 

In order to optimize the models of the considered 

system (the Spencer-Danner and Li equations and the 

ANN), in this work, a new improved version of Bacterial 

Foraging Optimization algorithm is applied. The standard 

version of the optimizer will be referred as BFO and  

the novel variant proposed in this work as iBFO. BFO  

was proposed in 2002 by [57] and it is inspired from  

the foraging behavior of Escherichia coli bacteria. It simulates 

the foraging concept at colony level rather at individual 

level and includes behaviors such as chemotaxis, 

reproduction, elimination and dispersal (Fig. 2) [58]. The 

terminology used in the initial BFO variant indicates the 

bacterium as the structure that forms the colony. As it was 

pointed out by many researchers [58-61], the terminology 

specific to each metaheuristic can be confusing and 

difficult to understand and therefore, in order to simplify it 

and to keep it on the same level as the one used in the EA 

field, the bacterium will be further referred as ‘individual’ 

and the colony as ‘population’.  
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N1 N2 Nn-1 Nn
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Nout1
Noutk

   

   

   
 

Fig. 1: General schema of an MLP neural network. 
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Fig. 2: Simplified schema of the BFO algorithm. 
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Based on the perceived chemical gradients from  

the environment the bacteria rotate their flagella to move: 

i) a clockwise rotation causes a forward movement -known 

as move or swim-(which is performed when a rich gradient 

is reached); ii) a counterclockwise rotation generates a 

tumbling effect that causes a movement in a random 

direction (which is performed when searching for a richer 

gradient zone). These two types of movement represent the 

bacterial chemotaxis. The life-time of the individual is 

measured by the number of chemotactic steps it takes 

(represented by Nc) 

In the reproduction step, the 50% healthiest bacteria  

(a measure of how many nutrients found and how 

successful it was at avoiding noxious substances - aspect 

indicated by the fitness function J -) are split into two identical 

individuals. The created copies replace the less healthy 

individuals. The reproduction step is repeated Nre times. 

In the elimination-dispersal step, with a ped probability, 

the individuals are removed from the population and 

replaced with newly generated individuals. This step is 

repeated Ned times. As ped is fixed, the healthy and the least 

heaty individuals have the same probability of being 

replaced. Therefore, there can be cases where individuals 

located in the vicinity of the global optimum are replaced 

with individuals far from the optimum. In order to avoid 

this aspect, and to allow exploration when in the 

population are preponderantly less healthy individuals and 

exploitation when there are more healthy individuals, the 

ped is modified adaptively (Eq. 11). This modification 

represents the main idea of the iBFO variant. 

𝑝𝑒𝑑 =                                                                                     (11) 

{
 
 

 
 𝑓𝑖𝑡𝑚𝑖𝑛 + 𝑓𝑖𝑡𝑎𝑣𝑔

𝑓𝑖𝑡𝑚𝑎𝑥 + 𝑓𝑖𝑡𝑚𝑖𝑛
, 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑓𝑖𝑡𝑚𝑎𝑥 − 𝑓𝑖𝑡𝑎𝑣𝑔

𝑓𝑖𝑡𝑚𝑎𝑥 − 𝑓𝑖𝑡𝑚𝑖𝑛
, 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 

where fitmin represents the minimum of the fitness of all 

individuals, fitmax the maximum and fitavg the average. 

The modified BFO version is then used to optimize the: 

i) Spencer-Danner equation; ii) Li equation; iii) the ANN 

model. In the first and second case, the free parameters of the 

equations represent the parameters that are included into the 

individuals forming the population. In the third case, a direct 

encoding is used to transform the ANN into a vector with real 

numbers. It contains the following data: number of hidden 

layers, number of neurons in each hidden layer, weights, 

biases, activation functions and their parameters.  

RESULTS AND DISCUSSION 

Experimental analysis 

The experimental data of density (ρ) and the calculated 

density by Spencer-Danner and Li equations and ANN 

model for seven binary liquid mixtures {(1-pentanol + 1,2-

ethanediol), (1-pentanol+ 1,2-propanediol), (1-pentanol+ 

1,3-butanediol), (1-pentanol + 2,3-butanediol), (1-decanol + 

1,2-propanediol), (1-decanol + 1,3-butanediol) and (1-

decanol + 2,3-butanediol)} at six temperatures (T = 288.15, 

293.15, 298.15, 303.15, 308.15 and 313.15) K over the 

entire concentration range and atmospheric pressure are 

reported in Table S1. According to Table S1 and Figs. S1-

S7, as the alkanol concentration increases, the density 

decreases. On the other hand, in this study, the density of 

pure alkanols is lower than that of alkanediols, and 

increasing the concentration of alkanol in the binary system 

of alkanol + alkanediols reduces the density of the mixture. 

Also, increasing temperature has led to a decrease in density. 

The weakening of the intermolecular bonding strength and 

of the attraction between like and unlike molecules is  

a result of the extension of molecular agitation at higher 

temperatures. Consequently, the solution density is reduced 

and the total volume of mixture is expanded.  

 

Spencer-Danner and Li equations 

After applying the Spencer-Danner and Li equations 

the average absolute error (AAD%) compared with the 

experimental data are 26.31% and 26.51%. For the 

Spencer-Danner equation the absolute error (AD) varies 

from 0.015% to 72.77% and for Li equation from 2.8E-

05% to 73.11%. This high variation indicates that these 

equations do not always manage to capture the differences 

between the characteristics of mixture and to efficiently 

predict the density. As these equations have free 

parameters (fixed numerical values that do not have a 

physical correlation), in order to correct the models, these 

parameters were included into iBFO and optimized in 

order to reduce the AAD between the predicted values and 

the experimental data. The simulations were performed 

using the standard values for the control parameters of 

BFO (which are also the control parameters of iBFO): 

Nc=20, Ns=5, Nre=8, Ned=20, and intial value for ped=0.25. 

These values were used in all the simulations performed 

with iBFO for both model correction and ANN model 

optimization. In case of model correction, the iBFO  

was implemented for fitness maximization, where the fitness 

function is defined as: 
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Table 3: Optimization results for the Spencer-Danner equation. 

No crt. ZRAi  param no 1 ZRAi  param no 2 1-kij param Vm param MSE Fitness 

1 0.204524 0.000341 7.75803 0.856625 0.002618155 381.9483721 

2 0.169122 0.005636 8.162955 1.467956 0.002812363 355.5729034 

3 0.209740 0.002489 8.175595 0.841681 0.002877584 347.5137405 

4 0.211684 0.004525 9.011792 0.832806 0.002925056 341.8737606 

5 0.182087 0.003091 9.694200 1.347853 0.003205429 311.9706970 

6 0.156847 0.011477 7.703689 1.783278 0.003326817 300.5875815 

7 0.204269 0.010489 9.076000 1.019896 0.003363206 297.3353804 

8 0.101698 0.009995 10.56756 5.073863 0.004210575 237.4972808 

9 0.134288 0.011250 9.225008 2.501052 0.004593001 217.7225798 

10 0.267646 0.016471 9.651160 0.326427 0.004664778 214.3724624 

 

Fitness =
1

MSE
                                                                   (12) 

Where MSE represent the mean squared error between 

the predictions and the experimental values computed for the 

entire dataset for which experimental data were determined. 

As iBFO is a stochastic optimization approach and 

relies on randomization, the algorithm was run 10 times, 

with a stop condition representing by the number of 

function valuations (number of times the fitness function 

was computed) of 1.0E+06.  

In the optimization procedure, for the Spencer-Danner 

equation, the following parameters were optimized: the 

parameters included in the determination of ZRai (initial 

values 0.29056 and 0.08775), the parameter included in the 

calculation of 1-kij (initial value 8) and the parameter 

included in the calculation of Vm (initial value 0.2857). 

The results obtained (order based on the performance from 

highest to lowest) are presented in Table 3. 

For the best solution from Table 3 (No crt 1), the AAD 

decreased to 3.51%, with a variation of the AD from 

0.013% to 17.85% 

For the Li equation, the following parameters were 

optimized: the parameters included in the determination of 

ZRai (initial values 0.29056 and 0.08775) and the parameter 

included in the calculation of Vm (initial value 0.2857). 

The results obtained (order based on the performance from 

highest to lowest) are presented in Table 4. 

For the best solution from Table 4 (No crt 1), the AAD 

decreased to 4.01%, with a variation of the AAD from 

0.003% to 17.72%. 

As it can be observed, by optimizing the equations free 

parameters, the AAD is drastically reduced, the error 

reaching lower values. These results indicate the capability 

of iBFO to perform optimization of various 

subcomponents so that low errors between predictions and 

experimental are obtained. 

 

Artificial Neural Networks (ANN) 

Along the Spencer-Danner and Li equations, the 

considered system was also modeled using an alternative 

approach in the form of ANNs. In order to obtain a good 

ANN model, first the data underwent a set of pre-

processing steps that include: randomization (so as the data 

to be randomly included in the training or testing sub-sets), 

normalization (to reduce the influence of high value 

inputs) using a min-max approach [62] and data 

assignation (into training -75% of exemplars- and testing -

the remaining 25%-  sub-sets). 

After that, the iBFO was applied to determine the 

optimal ANNs. In this case, the same iBFO parameters 

used for the optimization of Spencer-Danner and Li 

equations were employed. As the number of parameters 

considered for optimization is much higher compared to 

the previous case, a limitation on the maximum allowed 

topology was set: maximum number of hidden layer 2, 

maximum neurons in the first hidden layer: 20, maximum 

neurons in the second hidden layer:10. The ANN  

has 4 inputs (corresponding to temperature, alkanol 

concentration, alkanol molecular weight and alkanediol  
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Table 4: Optimization results for the Li equation. 

No crt ZRAi  param no 1 ZRAi  param no 2 Vm param MSE Fitness 

1 0.166713 0.00067 1.457327956 0.002586682 386.5956 

2 0.193836 0.000416 1.034027956 0.002727195 366.6771 

3 0.15983 0.003492 1.620231655 0.002775955 360.2364 

4 0.165345 0.003264 1.533459795 0.002801394 356.9651 

5 0.198458 0.002037 0.985590575 0.002817168 354.9664 

6 0.192694 0.001439 1.065100418 0.002819783 354.6372 

7 0.226237 0.006498 0.636168734 0.003054998 327.3324 

8 0.235863 0.007655 0.606152104 0.004406578 226.9335 

9 0.266095 0.009367 0.281260577 0.004442773 225.0847 

10 0.162044 0.02338 1.823999516 0.006401154 156.2218 

 

Table 5. Statistics for the ANN models 

 Fitness MSE train MSE test Correlation train Correlation test Topology 

Best 21743.56 4.6E-05 0.000176 0.97551 0.962772 4:10:01 

Worst 1086.939 0.00092 0.002214 0.164367 0.250787 4:13:01 

Average 5103.41 0.000331 0.000994 0.793677 0.767167  

 

molecular weight) and 1 output; in combination with  

the previously mentioned limitations, the individual encoding 

the ANN has the following length: 1 (1 parameter indicating 

the number of hidden layers: {0,1, or 2}) + 1(1 parameter for 

the number of neurons in the first hidden layer:{0,1,2,..,20}) + 

1 (1 parameter for the number of neurons in the second hidden 

layer) + 4x20+20x10+10x1 (110 weights)+ 20+10+1(31 

biases) + 20+10+1 (31 activation functions)+20+10+1(31 

parameters of the activation functions)= 206. 

In order to determine the best ANN model, the number 

of simulations performed in this case is 50. The statistics 

for the determined models are presented in Table 5. 

Because in this case there are 2 subsets of data, the fitness 

function is modified as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 +10
−10

                                   (13) 

Where MSEtraining indicates the MSE for the training 

subset. 

As it can be observed from Table 5, the best obtained 

ANN has a topology with a single hidden layer and  

10 neurons in the hidden layer. The AAD for the training 

subset is 1.36% and for testing subset 1.49%.  

For the overall dataset, the AAD is 1.4 % (with a minimum 

AD of 0.001% and a maximum AD of 8.27%). Compared 

with the modified forms of the Spencer-Danner  

and Li equations, the best ANN model determined  

(Eqs (14-29)) is better but more complex. 

INP _1  1.0000 1e 10  = − − − +                              (14) 

( ) ( )2.0000 T 288.15 313.15 288.15 − −  

INP _ 2 1.0000  1e 10 = − − − +                              (15) 

( ) ( )2.0000 Xa  0.0507 0.9804 0.0507 − −  

INP _ 3 1.0000 1e 10= − − − +                              (16) 

( ) ( )2.0000 Ma  88.15 158.28 88.15 − −  

INP _ 4 1.0000 1e 10= − − − +                              (17) 

( ) ( )2.0000 Mb 62.07 90.12 62.07 − −  
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IH1_ 0 INP _ 0 0.538014112464( 014= +  +            (18) 

INP _1 2.71566633152776 +  

INP _ 2 0.803561140842874 +  

INP _ 3 0.0664251837688311− +  

1.35534724571033)  

H1_1 1.0 /  1  ( ( .0= +                               (19) 

exp INP _ 0 0.11798659655 1( 0( 7 7− + − +  

INP _1 1.87839318174615   +  

INP _ 2 0.650681567436466 +  

INP _ 3 3.34518406315425− +  

2.1674515247495 )1)))−  

H1_ 2  1.( (0 / 1.0= +                               (20) 

exp 0.9851805555( 17293−   

INP _ 0 0.049407946215451( 7+ − +  

INP _1 1.99968895840127− +  

 INP _ 2 2.697790117038− +  

INP _ 3 3.07806777564342− +  

3.20915523273081))))  

H1_ 3  1.( (0 / 1.0= +                               (21) 

exp INP _ 0 1.1355223981( ( 8899− + − +  

INP _1 2.59589242769507− +  

INP _ 2 3.31694888362031− +  

 INP _ 3 0.595717943747883− +  

1.0461970430343 )2)))−  

H1_ 4 2.( (0 / 1.0= +                               (22) 

exp 2  INP _ 0 2.6256629064( ( 8349−  +  +  

INP _1 3.85614059888569   +  

INP _ 2 2.94792472325152− +  

 INP _ 3 1.89131164445573 +  

2.3630564218857  ))) ) 1 .0−  

H1_ 5 exp pow INP _ 0 0.607151301( ( 38788( 5= − − +  + (23) 

INP _1 1.90991380689639  − +  

INP _ 2 0.863834750606748 +  

INP _ 3 1.25296449104419 +  

1.88815807423083 ,) ) 2 .0)−  

H1_ 6 1.0 /  1  ( ( .0= +                  (24) 

exp INP _ 0 2.2717316186539( 9(− +  +  

INP _1 3.76195560911522  − +  

INP _ 2 2.28427320350572− +  

INP _ 3 0.25441574183084− +  

1.2640608658810 )9)))−  

H1_ 7 2.( (0 / 1.0= +                               (25) 

exp 2  INP _ 0 2.1428072843( ( 4223−  +  +  

INP _1 1.6011577842267 +  

INP _ 2 1.13694068679597− +  

INP _ 3 0.845855533503027 +  

1.40399558625801   ) ) 0) )1.− −  

H1_ 8 exp pow INP _ 0 1.20860700239875( ( (= − − + − + (26) 

INP _1 2.74363607876265− +  

INP _ 2 2.09041587369404− +  

INP _ 3 1.0159125664968 +−  

3.45086144383626 ,  ) 2 .0))  

H1_ 9 1.( (0 / 1.0= +                               (27) 

exp INP _ 0 1.5504245469( ( 1944− + − +  

INP _1 0.714634298871562− +  

INP _ 2 1.27726298787646− +  

INP _ 3 1.98641997329205 +  

2.1796052102893))))−  

(OUTPUT _1 2 (.0 / 1.0= +                              (28) 

exp 0.1324281299( 87276−   

H1_ 0 3.950413566166 7( 6+ − +  

H1_1 1.28208530732835− +  

H1_ 2 0.474192546177217− +  

H1_ 3 1.91287622310382− +  

H1_ 4 1.60193068396212− +  

H1_ 5 2.05918838612152 +  

H1_ 6 3.31895724919471 +  

H1_ 7 1.16028774639627− +  

H1_ 8 0.507902693082274− +  

H1_ 9 1.1733834253948 +  

1.9214573857 )))83 3 0)7 1.− −  
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Densi ty  =                                (29) 

( ) ( )OUTPUT _1 1.0000 1e 10 1.0738 0.8036

2.0000 0.8036

+ + −  −

+
 

 

CONCLUSIONS  

The new experimental densities for the pure as well as 

binary mixtures of 1-pentanol or 1-decanol with  

1,2-ethanediol or 1,2-propanediol or 1,3-butanediol or  

2,3-butanediol were measured over the whole composition 

range at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) 

K and at normal atmospheric pressure. For this system, two 

types of modeling were performed: phenomenological, 

represented by Spencer-Danner and Li equations and black-

box, represented by Artificial Neural Networks (ANN). 

The classical relation for the Spencer-Danner and Li 

equations used for determining the density did not provide 

acceptable results, so an improved Bacterial Foraging 

Optimization algorithm was applied to correct the free 

parameters. The improvement consisted of introducing  

an adaptive strategy for changing the probability of 

replacing individuals with newly generated ones based on 

the average fitness of the entire population. The 

optimization results showed that the Spencer-Danner and 

Li equations were improved, the ADD% being reduced 

from 26.31% to 3.51% and from 26.51% to 4.0001% 

respectively. These substantially improved results proved 

that iBFO can lead to optimized models that can be further 

used for density predictions.   

In the case of black-box modeling, the same iBFO 

algorithm was applied to automatically determine the 

internal parameters and structure. For the resulting ANN 

model, the overall ADD was 1.4%, significantly lower 

than the optimized phenomenological models. These 

results prove the efficiency of Artificial Intelligence based 

techniques to capture the system dynamic and to generate 

highly performant models. Although having the best 

performance, the ANN is more complex than the 

optimized phenomenological models and it is suitable 

when the computational resources are not limited (as in the 

case of microchip processing). 
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