A Hybrid Mathematical Programming Model for Densities of Alkanol + Alkanediol Mixtures Using Bacterial Foraging Optimization Algorithm

Document Type : Research Article


1 Chemical Engineering Department, Faculty of Engineering, Shomal University, PO Box 731 Amol, I.R. IRAN

2 Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gh. Asachi" Technical University, Bld. Mangeron 73, 700050, Iasi, ROMANIA

3 Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi” Technical University of Iasi, Bld. D. Mangeron no 27, 700050, ROMANIA


In this work, the densities of pure and binary mixtures of 1-pentanol or 1-decanol with 1,2-ethanediol or 1,2-propanediol or 1,3-butanediol or 2,3-butanediol were measured at atmospheric pressure and temperatures between 288.15K and 313.15K. For the considered system, two types of models were applied: black box and phenomenological. The black box model is represented by Artificial Neural Networks (ANNs) optimized with an improved version of Bacterial Foraging Optimization (iBFO). The phenomenological models are represented by Spencer-Danner and Li equations. In addition, in order to better fit the Spencer-Danner and Li equations to the obtained experimental data, the free parameters of these models were included in an iBFO algorithm. The average absolute error of the best ANN obtained was 2.82%, while the new forms of the Spencer-Danner and Li equations had an improvement from 26.31% and 26.51% respectively to 3.51% and 4.01% respectively. These results indicate the flexibility and efficiency of iBFO, which is able to provide good solutions for a variety of cases.


Main Subjects

[1] Ge M.L., Ma J-L., Chu B., Densities and Viscosities of Propane-1,2,3-Triol + Ethane-1,2-Diol at T(298.15
to 338.15) K, J. Chem. Eng. Data, 55(1): 2649–2651 (2010).
[2] Pimentel-Rodas A., Galicia-Luna L.A., Castro-Arellano J.J., Simultaneous Measurement of Dynamic Viscosity and Density of n-Alkanes at High Pressures, J. Chem. Eng. Data., 62(1): 3946-3957 (2017).
[3] Pimentel-Rodas A., Galicia-Luna L.A., Castro-Arellano J.J., Viscosity and Density of N Alcohols
at Temperatures Between (298.15 and 323.15) K and Pressures up to 30 MPa, J. Chem. Eng. Data. 64(1): 324-336 (2019).
[4] Zorębski E., Lubowiecka-Kostka B., Thermodynamic and Transport Properties of (1,2-Ethanediol + 1-Nonanol) at Temperatures from (298.15 to 313.15) K, J. Chem. Thermodyn. 41(1): 97–204 (2009).
[5] Doghaei A.V., Rostami A.A., Omrani A., Densities, Viscosities, and Volumetric Properties of Binary Mixtures of 1,2-Propanediol + 1-Heptanol or 1-Hexanol and 1,2-Ethanediol + 2-Butanol or 2-Propanol at T(298.15, 303.15, and 308.15) K,
J. Chem. Eng. Data. 55(1): 2894–2899(2010).
[6]  Kermanpour F., Niakan H. Z., Sharifi T., Density and Viscosity Measurements of Binary Alkanol  Mixtures from (293.15 to 333.15) K at Atmospheric Pressure, J. Chem. Eng. Data. 58(1): 1086-1091(2013).
[7]  Poling B.E., Prausnitz J.M., O’Connell J.P., “The Properties of Gases and Liquids”, 5th ed, McGraw-Hill Education (2001).
[8] Spencer C.F., Danner R.P., Improved Equation for Prediction of Saturated Liquid Density, J. Chem. Eng. Data., 17(1): 236-241(1972).
[9]  Spencer C.F., Danner R.P., Prediction of Bubble-Point Density of Mixtures, J. Chem. Eng. Data. 18(1): 230-234 (1973).
[10] Spencer C.F., Adler S.B., A Critical Review of Equations for Predicting Saturated Liquid Density,
J. Chem. Eng. Data. 23(1): 83-89(1978).
[11] Mohsen-Nia M., Modarress H., Rasa H., Measurement and Modeling of Density, Kinematic Viscosity, and Refractive Index for Poly(Ethylene Glycol) Aqueous Solution at Different Temperatures, J. Chem. Eng. Data., 50(1):1662-16662005.
[12] Jouyban A., Mirheydari S.N., Barzegar-Jalali M., Shekaari H., Acree J.W.E., Comprehensive Models for Density Prediction of Ionic Liquid +Molecular Solvent Mixtures at Different Temperatures, Phys. Chem. Liquids, 58(3): 309-324 (2020).
[13] Pirdashti M., Curteanu S., Kamangar M.H., Hassim M.H., Khatami M.A., Artificial Neural Networks: Applications in Chemical Engineering, Rev. Chem. Eng., 29(4): 205-239 (2013).
[14] Lombardi C., Mazzola A., Prediction of Two-Phase Mixture Density Using Artificial Neural Networks, Ann. Nuc. Energy, 24(17): 1373-1387(1997).
[15] Rocabruno-Valdés C.I., Ramírez-Verduzco L.F., Hernández J.A., Artificial Neural Network Models to Predict Density, Dynamic Viscosity, and Cetane Number of Biodiesel, Fuel, 147(1): 9-17 (2015).
[16] Najafi-Marghmaleki A., Khosravi-Nikou M.R., Barati-Harooni A., A New Model for Prediction of Binary Mixture of Ionic Liquids+ Water Density Using Artificial Neural Network, J. Mol. Liq. 220(1): 232-237(2016).
[17] Najafi-Marghmaleki A., Khosravi-Nikou M.R., Barati-Harooni A., A New Model for Prediction of Binary Mixture of Ionic Liquids + Water Density Using Artificial Neural Network, J Mol Liq., 220(1); 232-237 (2016).
[18] Qi G.H., Dong F., Xu V.B., Wu M.M., Hu J., Gas/Liquid Two-Phase Flow Regime Identification in Horizontal Pipe Using Support Vector Machines, International Conference on Machine Learning and Cybernetics, 1746-1751(2005).
[19] Wang L., Liu J., Yan Y., Wang X., Wang T., Gas-Liquid Two-Phase Flow Measurement Using Coriolis Flowmeters Incorporating Artificial Neural Network, Support Vector Machine, and Genetic Programming Algorithms, IEEE Trans Instrum Meas, 66(5): 852-868 (2017).
[20] Pirdashti M.., Movagharnejad K., Curteanu S., Dragoi E.N., Rahimpour F., Prediction of Partition Coefficients of Guanidine Hydrochloride in PEG–Phosphate Systems Using Neural Networks Developed with Differential Evolution Algorithm, J. Ind. Eng. Chem., 27(1): 268-275 (2015).
[21] Pirdashti M., Movagharnejad K., Curteanu S., Leon F., Rahimpour F., LLE Data Prediction Using the K-Nearest Neighbor Method, Iran. J. Chem. Eng., 13(1): 14-32 (2016).
[22] Pirdashti M., Movagharnejad K., Mobalegholeslam P., Curteanu S., Leon F., Phase Equilibrium and Physical Properties of Aqueous Mixtures of Poly (vinyl pyrrolidone) with Trisodium Citrate, Obtained Experimentally and by Simulation, J. Mol. Liq., 223(1): 903-920(2016).
[23] Pirdashti M.., Taheri M., Dragoi E-N., Curteanu S., Machine Learning Approaches for Prediction of Phase Equilibria in Poly (Ethylene Glycol) + Sodium Phosphate Aqueous Two-Phase Systems, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 185-197 (2020).
[24] Lashkarblooki M., Hezave A.Z., AL-Ajami A.M., Ayatollahi S., Viscosity Prediction of Ternary Mixtures Containing ILs Using Multi-Layer Perceptron Artificial Neural Network, Fluid Phase Equilib., 326(1): 15-20 (2012).
[25] Shahsavar A., S Khanmohammadi., Karimipour A., Goodarzi M., A Novel Comprehensive Experimental Study Concerned Synthesizes and Prepare Liquid Paraffin-Fe3O4 Mixture to Develop Models for Both Thermal Conductivity & Viscosity: A New Approach of GMDH Type of Neural Network, Int. J. Heat Mass Tran., 131(1): 432-441(2019).
[26] Melo E.B., Oliveira E.T., Martins T.D., Artificial Neural Network Prediction Indicators of Density Functional Theory Metal Hydride Models, Fluid Phase Equilib., 506(1): 112411 (2021)
[27] Griffin W.O., Darse J.A., A Neural Network Correlation for Molar Density and Specific Heat of Water: Predictions at Pressures up to 100 MPa, Int. J. Hydrog., 38(27): 11920-11929 (2013).
[28] Tarjomannejad A., Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method, Iran. J. Chem. Chem. Eng. (IJCCE), 34(4): 97-111 (2015).
[29]Ahmadi N., Rezazadeh S., Dadvand A., Mirzaee I., Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution, Int. J. Sustain. Energy, 2(2): 36-46 (2015).
[30] Ahmadi N., Kõrgesaar M., Analytical Approach to Investigate the Effect of Gas Channel Draft Angle on the Performance of PEMFC and Species Distribution. Int. J. Heat Mass Transf., 152(1): 119529 (2020).
[31] Ahmadi N., Rezazadeh S., Asgharikia M., Shabahangnia E., Optimization of Polymer Electrolyte Membrane Fuel Cell Performance by Geometrical Changes. Iran. J. Chem. Chem. Eng., (IJCCE), 36(2): 89-106 (2017).
[32] Boned Ch., Baylaucq A., . Bazile J.P. Liquid Density of 1-Pentanol at Pressures up to 140 MPa and from 293.15 to 403.15 K, Fluid Phase Equilib. 270(1-2): 69-74 (2008).
[33] Srinivasa R., Imran Khan M., Thomas K., Raju S.S., Suresh P., Hari Babu B., The Study of Molecular Interactions in 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate+ 1-Pentanol from Density, Speed of Sound and Refractive Index Measurements, J. Chem. Thermodyn. 98(1): 298-308 (2016).
[34] Urszula D., Laskowska M., Effect of Temperature and Composition on the Density and Viscosity of Binary Mixtures of Ionic Liquid with Alcohols, J. Sol Chem. 38(1): 779-799(2009).
[35] Almasi M., Mousavi L., Excess Molar Volumes of Binary Mixtures of Aliphatic Alcohols (C1–C5) with Nitromethane over the Temperature Range 293.15 to 308.15 K: Application of the ERAS Model and Cubic EOS, J. Mol. Liq. 163(1): 46-52 (2011).
[36] Al-Jimaz S., Adel A.,  Al-Kandary J., Abdul-Latif A.M., Densities and Viscosities for Binary Mixtures of Phenetole with 1-Pentanol, 1-Hexanol, 1-Heptanol, 1-Octanol, 1-Nonanol, and 1-Decanol at Different Temperatures, Fluid Phase Equilib., 218(1): 247-260 (2004).
[37] Estrada-Baltazar A., Bravo-Sanchez M.G., Iglesias-Silva G.A., Alvarado J.F.J., Castrejon-Gonzalez, Ramos-Estrada E.O. M., Densities and Viscosities of Binary Mixtures of n-Decane+ 1-Pentanol,+ 1-Hexanol,+ 1-Heptanol at Temperatures from 293.15 to 363.15 K and Atmospheric Pressure, J. Chem. Eng. 23(1): 559-571 (2015).
[38] Moosavi M., Motahari A., Rostami A.A., Investigation on Some Thermophysical Properties of Poly(ethylene glycol) Binary Mixtures at Different Temperatures, J. Chem. Thermodyn. 58(1): 340–350 (2013).
[39] Li Q.S., Tian Y.M., Vang S., Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K, J. Chem. Eng. Data. 53(1): 271–274(2008).
[40] Hemmat M., Moosavi M., Rostami A.A., Study on Volumetric and Viscometric Properties of 1,4-Dioxane and 1,2-Ethanediol/1,3-Propanediol Binary Liquid Mixtures, Measurement and Prediction, J. Mol. Liq., 225(1): 107-117(2017). 
[41] Zemánková K., Troncoso J., Romaní L., Excess Volumes and Excess Heat Capacities for Alkanediol+Water Systems in the Temperature Interval (283.15–313.15)K, Fluid Phase Equilib. 356(1): 1–10 (2013).
[42] Zorębski E.,  Lubowiecka-Kostka B., Thermodynamic and Transport Properties of (1,2-Ethanediol+1-Nonanol) at Temperatures from (298.15 to 313.15)K, J. Chem. Thermodyn. 41(1): 197–204 (2009).
[43] Tsierkezos N.G., Molinou I.E., Thermodynamic Properties of Water + Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K, J. Chem. Eng. Data, 43(1): 989–993(1998).
[44] Naidu B.V.K., Rao K.C., Subha M.C.S., Densities and Viscosities of Mixtures of Some Glycols and Poly Glycols in Dimethyl Sulfoxide at 308.15 K, J. Chem. Eng. Data. 47(1): 379–382(2002).
 [45] George J., Sastry N.V., Densities, Dynamic Viscosities, Speeds of Sound, and Relative Permittivities for Water + Alkanediols (Propane-1,2- and -1,3-Diol and Butane-1,2-, -1,3-, -1,4-, and -2,3-Diol) at Different Temperatures, J. Chem. Eng. Data, 48 (1): 1529-1539(2003).
[46] Azarang N., Movagharnejad K., Pirdashti M., Ketabi M., Densities, Viscosities, Refractive Indices and Excess Properties of Poly (Ethylene Glycol) 300+1,2-Ethanediol, 1,2-PPropanediol, 1,3-Propanediol, 1,3-Butanediol and 1,4-Butanediol Binary Liquid Mixtures, J. Chem. Eng. Data, 66(7): 3448-3462 (2020).
[47] Riddick J.A., Bunger W.B., Sakano T.K., “Organic Solvents: Physical Properties and Methods of Purification”, 4th Edition, Wiley-Interscience, New York (1986).
 [48] E Zorebski., M Dzida., Piotrowska M., Study of the Acoustic and Thermodynamic Properties of 1,2- and 1,3-Propanediol by Means of High-Pressure Speed of Sound Measurements at Temperatures from (293 to 318) K and Pressures up to 101 MPa, J. Chem. Eng. Data, 53(1): 136–144(2008).
[49] Hawrylak B., Gracie K., Palepu R., Thermodynamic Properties of Binary Mixtures of Butanediols with Water, J. Sol. Chem., 27(1): 17-30(1998).
[50] Geyer H., Ulbig P., Görnert M.. Measurement of Densities and Excess Molar Volumes for (1, 2-Ethanediol, or 1, 2-Propanediol, or 1, 2-Butanediol+ Water) at the Temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2, 3-Butanediol+ Water) at the Temperatures (308.15, 313.15, and 318.15) K, J. Chem. Thermodyn., 32(1): 1585-1596 (2000).
[51] Checoni R.F., Experimental Study of the Excess Molar Volume of Ternary Mixtures Containing {Water+(1, 2-Propanediol, or 1, 3-Propanediol, or 1, 2-Butanediol, or 1, 3-Butanediol, or 1, 4-Butanediol, or 2, 3-Butanediol)+ Electrolytes} at a Temperature of 298.15 K and Atmospheric Pressure, J. Chem. Thermodyn. 42(1): 612-620(2010).
[52] Rackett H.G, Equation of State for Saturated Liquids, J. Chem. Eng. Data. 15(1): 514-517(1970).
[53] Yamada T., Gunn R.D., Saturated Liquid Molar Volumes. Rackett Equation, J. Chem. Eng. Data. 18(1): 234-236(1973).
[54] Li C.C., Critical Temperature Estimation for Simple Mixtures, Can J. Chem. Eng., 19(1): 709-710(1971).
[55] Chueh P.L., Prausnitz J.M., Vapor-Liquid Equilibria at High Pressures. Vapor-Phase Fugacity Coefficients in Nonpolar and Quantum-Gas Mixtures, Ind. Eng. Chem., 6(1): 492-498(1967).
[56] Puig Arnavat M., Bruno J. C., ”Artificial Neural Networks for Thermochemical Conversion of Biomass”. In Pandey A., Bhaskar T., Stöcker M.,  Sukumaran R. (Eds.), “Recent Advances in Thermo-Chemical Conversion of Biomass” (pp. 133–156). Elsevier. https://doi.org/10.1016/B978-0-444-63289-0.00005-3 (2015).
[57] K Passino.M., Biomimicry of Bacterial Foraging for Distributed Optimization and Control. Control Systems, IEEE Control Syst.. 22(3): 52-67(2002).
[58] Sorensen K., Metaheuristics—the Metaphor Exposed, Int. Trans. Oper. Res., 22(1): 3-18 (2015).
[59] Tovey C.A., “Nature-Inspired Heuristics: Overview and Critique. Recent Advances in Optimization and Modeling of Contemporary Problems”, INFORMS. (2018).
[60] Lones M.A., Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms, SN Computer Science, 49(1): 1-12 (2020).
[61] Niu B., Wanng J., Wang H., Bacterial-Inspired Algorithms for Solving Constrained Optimization Problems, Neurocomputing, 148(1): 54-62 (2015).
[62] Priddy K., Keller P., “Artificial Neural Networks: An introduction”, Washington, SPIE Press. (2005).